IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1405-d111899.html
   My bibliography  Save this article

Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China

Author

Listed:
  • Qinliang Tan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Research Center for Beijing Energy Development, Beijing 102206, China)

  • Yihong Ding

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yimei Zhang

    (Environmental Research Institute, Suzhou Research Institute, North China Electric Power University, Beijing 102206, China)

Abstract

In this paper, a collaborative power dispatching system (CPDS) was developed to maximize the profit of a regional biomass power system consisting of an independent power grid. A power generating, dispatching and carbon emissions trading system (CETS) could be engaged in joint strategic planning and operational execution. The principal of CPDS is interactive planning of generating units in power generation and carbon emissions trading. An efficient carbon emissions trading plan for a CPDS would lead to optimized power generation levels under available power production capacities and carbon emissions. In a case study, four generator policies are proposed by considering basic CETSs to comparatively analyze the function of each generator in the CPDS. Results of four scenarios are compared, showing that biomass energy could replace thermal units to a certain extent, the carbon emissions and coal consumption of the CPDS would lie at a lower level, and a pumped storage unit could adjust the load fluctuations. The results of a carbon trading analysis show that the CETS has no significant impact on the CPDS, but along with the increase in trading price or the decrease in the free quota, the economic interests of power plants will be reduced accordingly. This may lead to carrying out low-carbon projects and reducing carbon emissions. Therefore, it is imperative to reduce carbon emissions by replacing power units with high energy consumption, and improve the consumption capacity of renewable energy.

Suggested Citation

  • Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1405-:d:111899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    2. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    3. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    4. Zhang, Y.M. & Huang, G.H. & Lin, Q.G. & Lu, H.W., 2012. "Integer fuzzy credibility constrained programming for power system management," Energy, Elsevier, vol. 38(1), pages 398-405.
    5. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    6. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    7. Beluco, Alexandre & Kroeff de Souza, Paulo & Krenzinger, Arno, 2012. "A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro PV generating plants," Renewable Energy, Elsevier, vol. 45(C), pages 24-30.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    9. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    10. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    12. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    13. Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2013. "Dynamic modelling of a PV pumping system with special consideration on water demand," Applied Energy, Elsevier, vol. 112(C), pages 635-645.
    14. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    15. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    16. Ting-Chia Ou & Wei-Fu Su & Xian-Zong Liu & Shyh-Jier Huang & Te-Yu Tai, 2016. "A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers," Energies, MDPI, vol. 9(9), pages 1-12, August.
    17. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    18. Bowen Xiao & Dongxiao Niu & Xiaodan Guo & Xiaomin Xu, 2015. "The Impacts of Environmental Tax in China: A Dynamic Recursive Multi-Sector CGE Model," Energies, MDPI, vol. 8(8), pages 1-28, July.
    19. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    20. Rive, Nathan, 2010. "Climate policy in Western Europe and avoided costs of air pollution control," Economic Modelling, Elsevier, vol. 27(1), pages 103-115, January.
    21. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    22. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongyu & Zhang, Da & Zhang, Xiliang, 2023. "The role of output-based emission trading system in the decarbonization of China's power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    3. Zuoyu Liu & Weimin Zheng & Feng Qi & Lei Wang & Bo Zou & Fushuan Wen & You Xue, 2018. "Optimal Dispatch of a Virtual Power Plant Considering Demand Response and Carbon Trading," Energies, MDPI, vol. 11(6), pages 1-19, June.
    4. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    5. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    7. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    3. Huang, Hai & Roland-Holst, David & Springer, Cecilia & Lin, Jiang & Cai, Wenjia & Wang, Can, 2019. "Emissions trading systems and social equity: A CGE assessment for China," Applied Energy, Elsevier, vol. 235(C), pages 1254-1265.
    4. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    5. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    6. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    7. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    8. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    10. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).
    11. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    12. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    13. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    14. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    15. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    16. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    17. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    18. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    19. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    20. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1405-:d:111899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.