Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-021-04406-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
- Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
- Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
- Arouri, Mohamed El Hédi & Jawadi, Fredj & Nguyen, Duc Khuong, 2012.
"Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS,"
Economic Modelling, Elsevier, vol. 29(3), pages 884-892.
- Mohamed El Hedi Arouri & Fredj Jawadi & Duc Khuong Nguyen, 2012. "Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS," Post-Print hal-01410551, HAL.
- Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
- Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011.
"Carbon price volatility: Evidence from EU ETS,"
Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
- Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2009. "Carbon price volatility: Evidence from EU ETS," CEEP-BIT Working Papers 4, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Bao-jun Tang & Pi-qin Gong & Cheng Shen, 2017. "Factors of carbon price volatility in a comparative analysis of the EUA and sCER," Annals of Operations Research, Springer, vol. 255(1), pages 157-168, August.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
- Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
- Rootzén, Johan & Johnsson, Filip, 2016. "Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry," Energy Policy, Elsevier, vol. 98(C), pages 459-469.
- Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
- Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015.
"Understanding volatility dynamics in the EU-ETS market,"
Energy Policy, Elsevier, vol. 82(C), pages 321-331.
- Maria Eugenia Sanin & Maria Mansanet-Bataller & Francesco Violante, 2015. "Understanding volatility dynamics in the EU-ETS market," CREATES Research Papers 2015-04, Department of Economics and Business Economics, Aarhus University.
- Maria Eugenia Sanin & Francesco Violante & Maria Mansanet-Bataller, 2015. "Understanding volatility dynamics in the EU-ETS market," Post-Print hal-02878047, HAL.
- Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
- Bangzhu Zhu, 2012. "A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network," Energies, MDPI, vol. 5(2), pages 1-16, February.
- repec:dau:papers:123456789/6791 is not listed on IDEAS
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
- Jiao, Lei & Liao, Yin & Zhou, Qing, 2018. "Predicting carbon market risk using information from macroeconomic fundamentals," Energy Economics, Elsevier, vol. 73(C), pages 212-227.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Feng, Zhen-Hua & Wei, Yi-Ming & Wang, Kai, 2012.
"Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS,"
Applied Energy, Elsevier, vol. 99(C), pages 97-108.
- Zhen-Hua Feng & Yi-Ming Wei & Kai Wang, 2011. "Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS," CEEP-BIT Working Papers 19, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Zhang, Yue-Jun & Wei, Yi-Ming, 2010.
"An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect,"
Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
- Yue-Jun Zhang & Yi-Ming Wei, 2009. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," CEEP-BIT Working Papers 3, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Zhang, Ningning & Lin, Aijing & Shang, Pengjian, 2017. "Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 161-173.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
- Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
- Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Montagnoli, Alberto & de Vries, Frans P., 2010. "Carbon trading thickness and market efficiency," Energy Economics, Elsevier, vol. 32(6), pages 1331-1336, November.
- Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Dong Zhang & Pengkun Wu & Chong Wu & Eric W. T. Ngai, 2024. "Forecasting duty-free shopping demand with multisource data: a deep learning approach," Annals of Operations Research, Springer, vol. 339(1), pages 861-887, August.
- Shyamali Ghosh & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2023. "Interactive strategy of carbon cap-and-trade policy on sustainable multi-objective solid transportation problem with twofold uncertain waste management," Annals of Operations Research, Springer, vol. 326(1), pages 157-197, July.
- Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
- Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Na Fu & Liyan Geng & Junhai Ma & Xue Ding, 2023. "Price, Complexity, and Mathematical Model," Mathematics, MDPI, vol. 11(13), pages 1-30, June.
- Chu, Wen-Jun & Fan, Li-Wei & Zhou, P., 2024. "Extreme spillovers across carbon and energy markets: A multiscale higher-order moment analysis," Energy Economics, Elsevier, vol. 138(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
- Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015.
"Carbon Price Analysis Using Empirical Mode Decomposition,"
Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
- Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2014. "Carbon price analysis using empirical mode decomposition," Working Papers 2014-156, Department of Research, Ipag Business School.
- Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
- Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
- Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
- Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
- Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
More about this item
Keywords
Carbon futures price; EEMD; Fuzzy entropy; K-means clustering method; ARMA; Extreme learning machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:313:y:2022:i:1:d:10.1007_s10479-021-04406-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.