Selecting forecasting models for portfolio allocation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012.
"On the forecasting accuracy of multivariate GARCH models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- Silvennoinen, Annastiina & Teräsvirta, Timo, 2007.
"Multivariate GARCH models,"
SSE/EFI Working Paper Series in Economics and Finance
669, Stockholm School of Economics, revised 18 Jan 2008.
- Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Multivariate GARCH models," CREATES Research Papers 2008-06, Department of Economics and Business Economics, Aarhus University.
- Becker, Ralf & Clements, Adam E., 2008.
"Are combination forecasts of S&P 500 volatility statistically superior?,"
International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
- Ralf Becker & Adam Clements, 2007. "Are combination forecasts of S&P 500 volatility statistically superior?," NCER Working Paper Series 17, National Centre for Econometric Research.
- West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993.
"A utility-based comparison of some models of exchange rate volatility,"
Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
- Kenneth D. West & Hali J. Edison & Dongchul Cho, 1992. "A Utility Based Comparison of Some Models of Exchange Rate Volatility," NBER Technical Working Papers 0128, National Bureau of Economic Research, Inc.
- Dongchul Cho & Hali J. Edison & Kenneth D. West, 1993. "A utility based comparison of some models of exchange rate volatility," International Finance Discussion Papers 441, Board of Governors of the Federal Reserve System (U.S.).
- Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
- Engle, Robert F & Sheppard, Kevin K, 2001.
"Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH,"
University of California at San Diego, Economics Working Paper Series
qt5s2218dp, Department of Economics, UC San Diego.
- Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
- Massimiliano Caporin & Michael McAleer, 2010.
"Ranking Multivariate GARCH Models by Problem Dimension,"
CARF F-Series
CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
- Caporin, M. & McAleer, M.J., 2010. "Ranking multivariate GARCH models by problem dimension," Econometric Institute Research Papers EI 2010-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CIRJE F-Series CIRJE-F-742, CIRJE, Faculty of Economics, University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003.
"Choosing the Best Volatility Models: The Model Confidence Set Approach,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the best volatility models: the model confidence set approach," FRB Atlanta Working Paper 2003-28, Federal Reserve Bank of Atlanta.
- Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
- Caporin, Massimiliano & McAleer, Michael, 2014.
"Robust ranking of multivariate GARCH models by problem dimension,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
- Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Documentos de Trabajo del ICAE 2012-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2012.
- Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
- Caporin, M. & McAleer, M.J., 2011.
"Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation,"
Econometric Institute Research Papers
EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012.
"On the forecasting accuracy of multivariate GARCH models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Audrino, Francesco, 2014.
"Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
- Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014.
"The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
- Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- R. Khalfaoui & M. Boutahar, 2012.
"Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis,"
Working Papers
halshs-00793068, HAL.
- Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
- Rabeh Khalfaoui & Mohammed Boutahar, 2012. "Portfolio Risk Evaluation An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," AMSE Working Papers 1208, Aix-Marseille School of Economics, France.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
- Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
- Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Luc Bauwens & Edoardo Otranto, 2023.
"Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
- L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Bauwens, Luc & Otranto, Edoardo, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," LIDAM Discussion Papers CORE 2020034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Otranto, Edoardo, 2022. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," LIDAM Reprints CORE 3202, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Otranto, Edoardo, 2010.
"Identifying financial time series with similar dynamic conditional correlation,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
- E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
More about this item
Keywords
Multivariate volatility; portfolio allocation; forecast evaluation; model selection; model confidence set;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G00 - Financial Economics - - General - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2012-08-23 (Econometrics)
- NEP-FOR-2012-08-23 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2012_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: School of Economics and Finance (email available below). General contact details of provider: https://edirc.repec.org/data/ncerrau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.