Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Yang, Mingjun & Xu, Yujie, 2014. "Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors," Applied Energy, Elsevier, vol. 130(C), pages 342-349.
- Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
- Kathe, Mandar V. & Empfield, Abbey & Na, Jing & Blair, Elena & Fan, Liang-Shih, 2016. "Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis," Applied Energy, Elsevier, vol. 165(C), pages 183-201.
- Khan, Mohammed N. & Shamim, Tariq, 2016. "Investigation of hydrogen generation in a three reactor chemical looping reforming process," Applied Energy, Elsevier, vol. 162(C), pages 1186-1194.
- Cho, Won Chul & Lee, Do Yeon & Seo, Myung Won & Kim, Sang Done & Kang, KyoungSoo & Bae, Ki Kwang & Kim, Change Hee & Jeong, SeongUk & Park, Chu Sik, 2014. "Continuous operation characteristics of chemical looping hydrogen production system," Applied Energy, Elsevier, vol. 113(C), pages 1667-1674.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
- Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
- Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
- Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
- Zou, Xuehua & Chen, Tianhu & Zhang, Ping & Chen, Dong & He, Junkai & Dang, Yanliu & Ma, Zhiyuan & Chen, Ye & Toloueinia, Panteha & Zhu, Chengzhu & Xie, Jingjing & Liu, Haibo & Suib, Steven L., 2018. "High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production," Applied Energy, Elsevier, vol. 226(C), pages 827-837.
- Lu, Qiuxiang & zhang, Luqi & Chen, Xin & Li, Kuo & Meng, Lingshuai & Xie, Xiaoguang & Yuan, Shenfu & Gao, Yuchen & Zhou, Xinran, 2022. "Synergistic effect of volatile inherent minerals on catalytic pyrolysis of wheat straw over a Fe–Ca–Ni catalyst," Energy, Elsevier, vol. 253(C).
- Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
- Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
- Liu, Rui & Li, Chongcong & Zheng, Jinhao & Xue, Feilong & Yang, Mingjun & Zhang, Yan, 2023. "Hydrogen-rich syngas production via sorption-enhanced steam gasification of biomass using FexNiyCaO bi-functional materials," Energy, Elsevier, vol. 281(C).
- Wu, Shijie & Ren, Zongqiang & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Upcycling plastic waste into syngas by staged chemical looping gasification with modified Fe-based oxygen carriers," Applied Energy, Elsevier, vol. 353(PB).
- He, Renze & Deng, Jin & Deng, Xiaoling & Xie, Xiaoguang & Li, Yun & Yuan, Shenfu, 2022. "Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis," Energy, Elsevier, vol. 238(PC).
- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Cho, Won Chul & Lee, Doyeon & Kim, Chang Hee & Cho, Hyun Suk & Kim, Sang Done, 2018. "Feasibility study of the use of by-product iron oxide and industrial off-gas for application to chemical looping hydrogen production," Applied Energy, Elsevier, vol. 216(C), pages 466-481.
- Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
- Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).
- Sun, Zhao & Russell, Christopher K. & Fan, Maohong, 2021. "Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char," Renewable Energy, Elsevier, vol. 163(C), pages 445-452.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Esteban-Díez, G. & Gil, María V. & Pevida, C. & Chen, D. & Rubiera, F., 2016. "Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds," Applied Energy, Elsevier, vol. 177(C), pages 579-590.
- Hua, Xiuning & Fan, Yiran & Wang, Yidi & Fu, Tiantian & Fowler, G.D. & Zhao, Dongmei & Wang, Wei, 2017. "The behaviour of multiple reaction fronts during iron (III) oxide reduction in a non-steady state packed bed for chemical looping water splitting," Applied Energy, Elsevier, vol. 193(C), pages 96-111.
- Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
- Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
- Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
- Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
- García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
- Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
- Cho, Won Chul & Lee, Jun Kyu & Nam, Gyeong Duk & Kim, Chang Hee & Cho, Hyun-Seok & Joo, Jong Hoon, 2019. "Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane," Applied Energy, Elsevier, vol. 239(C), pages 644-657.
- Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Wang, Chunsheng & Wang, Yishuang & Chen, Mingqiang & Hu, Jiaxin & Liang, Defang & Tang, Zhiyuan & Yang, Zhonglian & Wang, Jun & Zhang, Han, 2021. "Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming," Energy, Elsevier, vol. 214(C).
- Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
- Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
- Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
- Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
- Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
- Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
- Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
- Dou, Binlin & Wang, Chao & Song, Yongchen & Chen, Haisheng & Jiang, Bo & Yang, Mingjun & Xu, Yujie, 2016. "Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 536-546.
- Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
More about this item
Keywords
Chemical looping; Hydrogen generation; TCLHG; CO2capture; Ca2Fe2O5; Oxygen carrier;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:431-442. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.