High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.06.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
- Wang, Duo & Yuan, Wenqiao & Ji, Wei, 2011. "Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning," Applied Energy, Elsevier, vol. 88(5), pages 1656-1663, May.
- Phuphuakrat, Thana & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption," Applied Energy, Elsevier, vol. 87(7), pages 2203-2211, July.
- Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
- Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
- Ahmed, I. & Gupta, A.K., 2009. "Evolution of syngas from cardboard gasification," Applied Energy, Elsevier, vol. 86(9), pages 1732-1740, September.
- Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
- Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Yu & Lu, Minyi & Yang, Huazheng & Yao, Yingbang & Tao, Tao & Lu, Shengguo & Wang, Chao & Ramesh, Rajendran & Kendall, Michaela & Kendall, Kevin & Ouyang, Xiaoping & Liang, Bo, 2020. "80 Hours operation of a tubular solid oxide fuel cell using propane/air," Applied Energy, Elsevier, vol. 272(C).
- Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
- Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
- Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
- Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
- Shen, Yafei & Wang, Junfeng & Ge, Xinlei & Chen, Mindong, 2016. "By-products recycling for syngas cleanup in biomass pyrolysis – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1246-1268.
- Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
- Hu, Fu-Xiang & Yang, Guo-Hua & Ding, Guo-Zhu & Li, Zhen & Du, Ka-Shuai & Hu, Zhi-Fa & Tian, Su-Rui, 2016. "Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter," Applied Energy, Elsevier, vol. 170(C), pages 47-57.
- Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
- Wang, Duo & Yuan, Wenqiao & Ji, Wei, 2011. "Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning," Applied Energy, Elsevier, vol. 88(5), pages 1656-1663, May.
- Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
- Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
- Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Halina Pawlak-Kruczek & Anam Suhail Ahmad & Lukasz Niedzwiecki, 2023. "Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor," Energies, MDPI, vol. 16(15), pages 1-26, August.
- Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
- Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
- Ahmed, I. & Jangsawang, W. & Gupta, A.K., 2012. "Energy recovery from pyrolysis and gasification of mangrove," Applied Energy, Elsevier, vol. 91(1), pages 173-179.
- Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
- Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
- Nakamura, Shunsuke & Kitano, Shigeru & Yoshikawa, Kunio, 2016. "Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed," Applied Energy, Elsevier, vol. 170(C), pages 186-192.
- Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
- Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
- Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
More about this item
Keywords
Fe-Ni/Palygorskite catalyst; Awaruite (Ni-Fe alloy); Steam reforming; Toluene; Biomass tar; Kinetic study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:827-837. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.