Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.09.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
- Lin, Leteng & Strand, Michael, 2013. "Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures," Applied Energy, Elsevier, vol. 109(C), pages 220-228.
- Lahijani, Pooya & Zainal, Zainal Alimuddin & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2015. "Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 615-632.
- Gao, Xiaoyan & Zhang, Yaning & Xu, Fei & Yin, Zhaoqin & Wang, Yingying & Bao, Fubing & Li, Bingxi, 2019. "Experimental and kinetic studies on the intrinsic reactivities of rice husk char," Renewable Energy, Elsevier, vol. 135(C), pages 608-616.
- Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
- Li, Jie & Tian, Yuanyu & Zong, Peijie & Qiao, Yingyun & Qin, Song, 2020. "Thermal cracking behavior, products distribution and char/steam gasification kinetics of seawater Spirulina by TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 145(C), pages 1761-1771.
- Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
- Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
- Śpiewak, Katarzyna & Czerski, Grzegorz & Soprych, Piotr, 2023. "Steam gasification of tire char supported by catalysts based on biomass ashes," Energy, Elsevier, vol. 285(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
- Gao, Xiaoyan & Zhang, Yaning & Xu, Fei & Yin, Zhaoqin & Wang, Yingying & Bao, Fubing & Li, Bingxi, 2019. "Experimental and kinetic studies on the intrinsic reactivities of rice husk char," Renewable Energy, Elsevier, vol. 135(C), pages 608-616.
- Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
- Pallarés Ranz, Javier & Gil, Antonia & Cortés, Cristóbal & Arauzo, Inmaculada, 2024. "Modeling of the evolution of the porous structure during a physical activation process for the production of activated biocarbon: A novel low conversion approach," Renewable Energy, Elsevier, vol. 224(C).
- Sérgio Castro Pereira & M. Filipa Ribeiro & Nuno Batalha & Marcelo Maciel Pereira, 2017. "Catalyst regeneration using CO 2 as reactant through reverse‐Boudouard reaction with coke," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 843-851, October.
- Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
- Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
- Lu, Qiuxiang & zhang, Luqi & Chen, Xin & Li, Kuo & Meng, Lingshuai & Xie, Xiaoguang & Yuan, Shenfu & Gao, Yuchen & Zhou, Xinran, 2022. "Synergistic effect of volatile inherent minerals on catalytic pyrolysis of wheat straw over a Fe–Ca–Ni catalyst," Energy, Elsevier, vol. 253(C).
- Despina Vamvuka & George Tsagris & Christia Loulashi, 2023. "Co-Gasification Performance of Low-Quality Lignite with Woody Wastes Using Greenhouse Gas CO 2 —A TG–MS Study," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
- Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
- Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
- Chen, Guan-Bang & Chang, Chung-Yu, 2024. "Co-gasification of waste shiitake substrate and waste polyethylene in a fluidized bed reactor under CO2/steam atmospheres," Energy, Elsevier, vol. 289(C).
- Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
- Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
- Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
- Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
- Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
More about this item
Keywords
Calcium ferrite; Biochar reactivity; Random pore model; CO2 gasification;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:445-452. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.