IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp644-657.html
   My bibliography  Save this article

Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane

Author

Listed:
  • Cho, Won Chul
  • Lee, Jun Kyu
  • Nam, Gyeong Duk
  • Kim, Chang Hee
  • Cho, Hyun-Seok
  • Joo, Jong Hoon

Abstract

An iron-based oxygen carrier can convert natural gas into chemicals (syngas or hydrogen) with controlled CO2 emission in a redox process. Mixed ionic-electronic conductor (MIEC)-supported iron oxides have shown high catalytic activity by facilitating inward O anion diffusion. However, their durability has been tested under limited conditions, and key factors affecting the degradation of MIEC-supported iron oxides have rarely been identified. In this work, we find that the inherent redox stability and electronic conductivity of the support material are decisive properties that determine the redox stability and activity of iron oxide/MIEC composites, such as perovskite-type La0.8Sr0.2FeO3−δ and fluorite-type Ce0.9Gd0.1O2−δ, over 100 redox cycles with the redox pair Fe – Fe2O3 at 900 °C. The low redox stability of the Fe2O3/La0.8Sr0.2FeO3−δ composite oxygen carrier is closely related to that of La0.8Sr0.2FeO3−δ and the extreme redox environment. The increased electronic conductivity of Ce0.9Gd0.1O2−δ under reducing conditions enhances the reaction rate. However, the low electronic conductivity of Ce0.9Gd0.1O2−δ under oxidizing conditions (5 × 10−4 S/cm at 750 °C) progressively promotes the formation of iron oxide product layer, resulting in low syngas selectivity (H2/CO > 2). This work helps design and select a compatible and commercially viable MIEC-supported iron oxide.

Suggested Citation

  • Cho, Won Chul & Lee, Jun Kyu & Nam, Gyeong Duk & Kim, Chang Hee & Cho, Hyun-Seok & Joo, Jong Hoon, 2019. "Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane," Applied Energy, Elsevier, vol. 239(C), pages 644-657.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:644-657
    DOI: 10.1016/j.apenergy.2019.01.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Won Chul & Lee, Doyeon & Kim, Chang Hee & Cho, Hyun Suk & Kim, Sang Done, 2018. "Feasibility study of the use of by-product iron oxide and industrial off-gas for application to chemical looping hydrogen production," Applied Energy, Elsevier, vol. 216(C), pages 466-481.
    2. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
    3. Källén, Malin & Rydén, Magnus & Lyngfelt, Anders & Mattisson, Tobias, 2015. "Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers," Applied Energy, Elsevier, vol. 157(C), pages 330-337.
    4. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    5. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    6. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    7. Siriwardane, Ranjani & Tian, Hanjing & Miller, Duane & Richards, George, 2015. "Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion," Applied Energy, Elsevier, vol. 157(C), pages 348-357.
    8. Kathe, Mandar V. & Empfield, Abbey & Na, Jing & Blair, Elena & Fan, Liang-Shih, 2016. "Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis," Applied Energy, Elsevier, vol. 165(C), pages 183-201.
    9. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    10. Cho, Won Chul & Lee, Do Yeon & Seo, Myung Won & Kim, Sang Done & Kang, KyoungSoo & Bae, Ki Kwang & Kim, Change Hee & Jeong, SeongUk & Park, Chu Sik, 2014. "Continuous operation characteristics of chemical looping hydrogen production system," Applied Energy, Elsevier, vol. 113(C), pages 1667-1674.
    11. Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
    12. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    2. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    3. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    4. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    5. Esteban-Díez, G. & Gil, María V. & Pevida, C. & Chen, D. & Rubiera, F., 2016. "Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds," Applied Energy, Elsevier, vol. 177(C), pages 579-590.
    6. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    7. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    8. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    9. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    10. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    11. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
    12. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    13. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    14. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    15. Marek, Ewa & Hu, Wenting & Gaultois, Michael & Grey, Clare P. & Scott, Stuart A., 2018. "The use of strontium ferrite in chemical looping systems," Applied Energy, Elsevier, vol. 223(C), pages 369-382.
    16. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
    17. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    18. Abdul Rahim Shaikh & Qinhui Wang & Long Han & Yi Feng & Zohaib Sharif & Zhixin Li & Jianmeng Cen & Sunel Kumar, 2022. "Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    19. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
    20. Hua, Xiuning & Fan, Yiran & Wang, Yidi & Fu, Tiantian & Fowler, G.D. & Zhao, Dongmei & Wang, Wei, 2017. "The behaviour of multiple reaction fronts during iron (III) oxide reduction in a non-steady state packed bed for chemical looping water splitting," Applied Energy, Elsevier, vol. 193(C), pages 96-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:644-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.