IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v169y2016icp491-498.html
   My bibliography  Save this article

Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities

Author

Listed:
  • García-Díez, E.
  • García-Labiano, F.
  • de Diego, L.F.
  • Abad, A.
  • Gayán, P.
  • Adánez, J.
  • Ruíz, J.A.C.

Abstract

Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries.

Suggested Citation

  • García-Díez, E. & García-Labiano, F. & de Diego, L.F. & Abad, A. & Gayán, P. & Adánez, J. & Ruíz, J.A.C., 2016. "Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities," Applied Energy, Elsevier, vol. 169(C), pages 491-498.
  • Handle: RePEc:eee:appene:v:169:y:2016:i:c:p:491-498
    DOI: 10.1016/j.apenergy.2016.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916301945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Yang, Mingjun & Xu, Yujie, 2014. "Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors," Applied Energy, Elsevier, vol. 130(C), pages 342-349.
    2. Hu, Yukun & Li, Xun & Li, Hailong & Yan, Jinyue, 2013. "Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems," Applied Energy, Elsevier, vol. 112(C), pages 747-754.
    3. Clair Gough & Paul Upham, 2011. "Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(4), pages 324-334, December.
    4. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
    5. Cho, Won Chul & Lee, Do Yeon & Seo, Myung Won & Kim, Sang Done & Kang, KyoungSoo & Bae, Ki Kwang & Kim, Change Hee & Jeong, SeongUk & Park, Chu Sik, 2014. "Continuous operation characteristics of chemical looping hydrogen production system," Applied Energy, Elsevier, vol. 113(C), pages 1667-1674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
    2. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    3. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    4. Shi, Bin & Wu, Erdorng & Wu, Wei, 2017. "Novel design of chemical looping air separation process for generating electricity and oxygen," Energy, Elsevier, vol. 134(C), pages 449-457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    2. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    3. Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
    4. Esteban-Díez, G. & Gil, María V. & Pevida, C. & Chen, D. & Rubiera, F., 2016. "Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds," Applied Energy, Elsevier, vol. 177(C), pages 579-590.
    5. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    6. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2016. "Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept," Applied Energy, Elsevier, vol. 180(C), pages 457-471.
    7. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.
    9. Wang, Chunsheng & Wang, Yishuang & Chen, Mingqiang & Hu, Jiaxin & Liang, Defang & Tang, Zhiyuan & Yang, Zhonglian & Wang, Jun & Zhang, Han, 2021. "Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming," Energy, Elsevier, vol. 214(C).
    10. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    11. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    12. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    13. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    14. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    15. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2016. "Power to Gas–biomass oxycombustion hybrid system: Energy integration and potential applications," Applied Energy, Elsevier, vol. 167(C), pages 221-229.
    16. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    17. Voitic, Gernot & Nestl, Stephan & Lammer, Michael & Wagner, Julian & Hacker, Viktor, 2015. "Pressurized hydrogen production by fixed-bed chemical looping," Applied Energy, Elsevier, vol. 157(C), pages 399-407.
    18. Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
    19. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    20. Levidow, Les & Borda-Rodriguez, Alexander & Papaioannou, Theo, 2014. "UK bioenergy innovation priorities: Making expectations credible in state-industry arenas," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 191-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:169:y:2016:i:c:p:491-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.