IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003139.html
   My bibliography  Save this article

Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process

Author

Listed:
  • Wang, Xun
  • Fu, Genshen
  • Xiao, Bo
  • Xu, Tingting

Abstract

Chemical looping reforming with water splitting (CLRWS) to coproduce the syngas and high purity hydrogen was investigated using Ni–Fe bimetallic oxygen carriers (OCs). The oxygen carrier with 20 wt% of NiO (termed as Ni20Fe80) was more suitable for CLRWS at 900 °C with a mass ratio of steam to bio-oil (S/B) of 1.2. Under the condition, the syngas exhibited a yield of 1.79 Nm3/kg with a H2/CO ratio of 2.01 in fuel reactor (FR), meanwhile, the hydrogen presented a yield of 0.70 Nm3/kg with a purity of 96.04% in steam reactor (SR). However, the stability of Ni20Fe80 gradually decreased during the cyclic test. Three metal oxide additives, including CeO2, Al2O3 and TiO2, with a mass fraction of 25 wt%, were used to modify the Ni20Fe80. The corresponding OCs were abbreviated as Ni15Fe60Ce25, Ni15Fe60Al25 and Ni15Fe60Ti25. The Ni15Fe60Ce25 exhibited the best performance during the cyclic test. After 5 cycles, the syngas yield, hydrogen yield and purity were 2.01 Nm3/kg, 0.75 Nm3/kg and 96.26%, respectively. The Ni15Fe60Al25 has good potential for syngas production, but not suitable for hydrogen production in SR. It was attributed to that the formation of iron-aluminum spinel regulated the lattice oxygen reactivity to favor the syngas production, as well inhibited the reduction of Fe species, which resulted in a low hydrogen yield in SR.

Suggested Citation

  • Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003139
    DOI: 10.1016/j.energy.2022.123410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    2. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    3. Liu, Yali & Zhai, Yunbo & Li, Shanhong & Liu, Xiangmin & Liu, Xiaoping & Wang, Bei & Qiu, Zhenzi & Li, Caiting, 2020. "Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge," Energy, Elsevier, vol. 203(C).
    4. Samprón, Iván & de Diego, Luis F. & García-Labiano, Francisco & Izquierdo, María T., 2021. "Optimization of synthesis gas production in the biomass chemical looping gasification process operating under auto-thermal conditions," Energy, Elsevier, vol. 226(C).
    5. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    6. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    7. Wang, Kun & An, Zewen & Wang, Fengyin & Liang, Wenzheng & Wang, Cuiping & Guo, Qingjie & Liu, Yongzhuo & Yue, Guangxi, 2021. "Effect of ash on the performance of iron-based oxygen carrier in the chemical looping gasification of municipal sludge," Energy, Elsevier, vol. 231(C).
    8. Liu, Feng & Liu, Jing & Li, Yu & Fang, Ruixue & Yang, Yingju, 2022. "Studies on the synergistically improved reactivity of spinel NiFe2O4 oxygen carrier for chemical-looping combustion," Energy, Elsevier, vol. 239(PB).
    9. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuanghui & Rui, Qixuan & Chen, Zongqi & Zhang, Lihui & Duan, Feng, 2023. "A comparative study of the reaction mechanism for deep reduction hydrogen production using two special steel solid wastes and a chemical looping hydrogen production scheme," Energy, Elsevier, vol. 284(C).
    2. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    3. Ding, Haoran & Liu, Shenghui & Liu, Fei & Han, Long & Sun, Shien & Qi, Zhifu, 2024. "Experimental and numerical investigation of chemical-loop steam methane reforming on monolithic BaCoO3/CeO2 oxygen," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiyuan & Wang, Xutao & Zhang, Lilin & Zhou, Hengtao & Ju, Rui & Rao, Peijun & Guo, Xiaoyu & Han, Yaqian & Chen, Hongwei, 2022. "Characteristics of steel slag as an oxygen carrier for chemical looping gasification of sewage sludge," Energy, Elsevier, vol. 247(C).
    2. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    3. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    4. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    5. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    6. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    9. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier," Energy, Elsevier, vol. 228(C).
    10. Yin, Fan & Sun, Liyan & Zeng, Dewang & Gao, Zixiang & Xiao, Rui, 2024. "Investigations on oxygen carriers derived from natural ores or industrial solid wastes for chemical looping hydrogen generation using biomass pyrolysis gas," Energy, Elsevier, vol. 293(C).
    11. Turap, Yusan & Wang, Zhentong & Wang, Yidi & Zhang, Zhe & Chen, Siyuan & Wang, Wei, 2023. "High purity hydrogen production via coupling CO2 reforming of biomass-derived gas and chemical looping water splitting," Applied Energy, Elsevier, vol. 331(C).
    12. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    13. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    14. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    15. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    16. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    17. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    18. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).
    19. Chang, Yuxue & Li, Guang & Ma, Shuqi & Zhao, Xiaolei & Li, Na & Zhou, Xing & Zhang, Yulong, 2022. "Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation," Energy, Elsevier, vol. 254(PB).
    20. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.