IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920301161.html
   My bibliography  Save this article

Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications

Author

Listed:
  • Li, Gang
  • Lv, Xuewei
  • Ding, Chengyi
  • Zhou, Xuangeng
  • Zhong, Dapeng
  • Qiu, Guibao

Abstract

Oxygen carriers play an important role in the excellent operation of the chemical looping gasification technology. The aim of this study is to perform a fundamental investigation on the reduction behavior and kinetics of CaO·Fe2O3 and Fe2O3 oxygen carriers. The oxygen carrier reaction performance was studied by a non-isothermal method using thermo-gravimetric analysis coupled with mass spectrometry. The application of model fitting method was adopted to describe the reduction process. X-ray diffraction measurements indicated that CaO·Fe2O3 was reduced to CaO and Fe following four stages (CaO·Fe2O3 → CaO·FeO·Fe2O3 → CaO·3FeO·Fe2O3 → 2CaO·Fe2O3 → Fe). The predominance range of CO generation corresponded to the stage from CaO·3FeO·Fe2O3 to Fe during CaO·Fe2O3 reduction, whereas during Fe2O3 reduction, it corresponded to the stage from FeO to Fe. The reduction of CaO·Fe2O3 can be described by a 2-D diffusion model during the entire reduction process, whereas the reduction of Fe2O3 can be initially described by a 3-D diffusion model when the reduction degree is within the range of 0–0.2, and subsequently by a reaction model when it is within the range of 0.2–1. The complex reduction intermediates of CaO·Fe2O3 resulted in the poor diffusion condition of lattice oxygen and gas products. CaO·Fe2O3 is a more promising oxygen carrier than Fe2O3 to generate CO in the chemical looping gasification technology.

Suggested Citation

  • Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920301161
    DOI: 10.1016/j.apenergy.2020.114604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
    2. Wang, Lulu & Feng, Xuan & Shen, Laihong & Jiang, Shouxi & Gu, Haiming, 2019. "Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process," Energy, Elsevier, vol. 179(C), pages 1205-1216.
    3. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    4. Huang, Zhen & He, Fang & Zhu, Huangqing & Chen, Dezhen & Zhao, Kun & Wei, Guoqiang & Feng, Yipeng & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2015. "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 546-553.
    5. Siriwardane, Ranjani & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions," Applied Energy, Elsevier, vol. 165(C), pages 952-966.
    6. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    7. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    8. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2017. "Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer," Applied Energy, Elsevier, vol. 201(C), pages 94-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).
    2. Zeng, Jimin & Hu, Jiawei & Qiu, Yu & Zhang, Shuai & Zeng, Dewang & Xiao, Rui, 2019. "Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    5. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    6. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    7. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    8. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    9. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    10. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    11. Yang, Jie & Ma, Liping & Yang, Jing & Liu, Hongpan & Liu, Shengyu & Yang, Yingchun & Mu, Liusen & Wei, Yi & Ao, Ran & Guo, Zhiying & Dai, Quxiu & Wang, Huiming, 2019. "Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 188(C).
    12. Liu, Shuai & Xiang, Dong & Xu, Ying & Sun, Zhe & Cao, Yan, 2017. "Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study," Applied Energy, Elsevier, vol. 202(C), pages 550-557.
    13. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    14. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    15. Huang, Zhen & Deng, Zhengbing & Chen, Dezhen & He, Fang & Liu, Shuai & Zhao, Kun & Wei, Guoqiang & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2017. "Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier," Energy, Elsevier, vol. 141(C), pages 1836-1844.
    16. Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
    17. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    18. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    19. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    20. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920301161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.