IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1916-1923.html
   My bibliography  Save this article

Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2

Author

Listed:
  • Zhang, Yongxing
  • Doroodchi, Elham
  • Moghtaderi, Behdad

Abstract

This study examines the performance of two metal oxide species in oxidizing ultra low concentration of methane (below 1% in volume). The focus on low methane concentrations are driven by its practical importance in applications such as abatement of ventilation air methane (VAM) in mining operations. Two mixed metal oxides, Fe2O3/Al2O3 and CuO/SiO2, were selected as oxygen carriers and prepared using dry impregnation method. The metal oxide loading contents are found to be 45wt% and 48wt%, respectively. The redox reactivity of the selected oxygen carriers were studied at various methane concentrations (i.e., 0.1%, 0.5% and 1% in volume) and temperatures between 873K and 1073K using a thermogravimetric analyzer. At low methane concentrations and low temperatures (below 1073K) the conversion of Fe2O3 to Fe3O4 showed higher reduction reactivity than the reduction of CuO to Cu. The redox reactivity of Fe2O3/Al2O3 was also found to be quite stable even after 60 redox cycles at 1073K. The respective weight percentages for oxidation and reduction were found to be 100% and 96.67%, corresponding to a full oxidized state Fe2O3 and a reduced state between Fe3O4 and FeO respectively. Moreover, the results for the global reactivity of reduction and oxidation (calculated at X=0.5) showed that the reduction rates were temperature and concentration dependent, varying from 0.14%/s to 2.2%/s over the range of temperatures and methane concentrations of interest. The oxidation rates were much higher than their reduction counterpart. The values varied from 8.95%/s at 873K to 10.65% at 1073K.

Suggested Citation

  • Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1916-1923
    DOI: 10.1016/j.apenergy.2013.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aisyah, L. & Ashman, P.J. & Kwong, C.W., 2013. "Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas," Applied Energy, Elsevier, vol. 109(C), pages 44-50.
    2. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    3. Wang, Jinsheng & Anthony, Edward J., 2008. "Clean combustion of solid fuels," Applied Energy, Elsevier, vol. 85(2-3), pages 73-79, February.
    4. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Breault, Ronald W. & Monazam, Esmail R., 2015. "Fixed bed reduction of hematite under alternating reduction and oxidation cycles," Applied Energy, Elsevier, vol. 145(C), pages 180-190.
    2. Chang, F.C. & Liao, P.H. & Tsai, C.K. & Hsiao, M.C. & Paul Wang, H., 2014. "Chemical-looping combustion of syngas with nano CuO–NiO on chabazite," Applied Energy, Elsevier, vol. 113(C), pages 1731-1736.
    3. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
    4. Cheng, Xianming & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Zhouhang & Long, Yanhui & Zheng, Min & Tian, Dong & Wang, Hua, 2018. "Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences," Applied Energy, Elsevier, vol. 230(C), pages 696-711.
    5. Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    7. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    8. Breault, Ronald W. & Monazam, Esmail R. & Carpenter, Jared T., 2015. "Analysis of hematite re-oxidation in the chemical looping process," Applied Energy, Elsevier, vol. 157(C), pages 174-182.
    9. Huang, Xin & Fan, Maohong & Wang, Xingjun & Wang, Yonggang & Argyle, Morris D. & Zhu, Yufei, 2018. "A cost-effective approach to realization of the efficient methane chemical-looping combustion by using coal fly ash as a support for oxygen carrier," Applied Energy, Elsevier, vol. 230(C), pages 393-402.
    10. Su, Shi & Yu, Xinxiang, 2015. "A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit," Energy, Elsevier, vol. 79(C), pages 428-438.
    11. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    12. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    13. Ksepko, Ewelina & Babiński, Piotr & Nalbandian, Lori, 2017. "The redox reaction kinetics of Sinai ore for chemical looping combustion applications," Applied Energy, Elsevier, vol. 190(C), pages 1258-1274.
    14. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    2. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    3. Ksepko, Ewelina & Sciazko, Marek & Babinski, Piotr, 2014. "Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers," Applied Energy, Elsevier, vol. 115(C), pages 374-383.
    4. Shuai Zhang & Rui Xiao, 2016. "Performance of iron ore oxygen carrier modified by biomass ashes in coal‐fueled chemical looping combustion," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 695-709, October.
    5. Chang, F.C. & Liao, P.H. & Tsai, C.K. & Hsiao, M.C. & Paul Wang, H., 2014. "Chemical-looping combustion of syngas with nano CuO–NiO on chabazite," Applied Energy, Elsevier, vol. 113(C), pages 1731-1736.
    6. Cho, Won Chul & Lee, Do Yeon & Seo, Myung Won & Kim, Sang Done & Kang, KyoungSoo & Bae, Ki Kwang & Kim, Change Hee & Jeong, SeongUk & Park, Chu Sik, 2014. "Continuous operation characteristics of chemical looping hydrogen production system," Applied Energy, Elsevier, vol. 113(C), pages 1667-1674.
    7. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    8. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    9. Imtiaz, Qasim & Broda, Marcin & Müller, Christoph R., 2014. "Structure–property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 119(C), pages 557-565.
    10. Belhadi, A. & Boumaza, S. & Trari, M., 2011. "Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system," Applied Energy, Elsevier, vol. 88(12), pages 4490-4495.
    11. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    12. Aisyah, L. & Ashman, P.J. & Kwong, C.W., 2013. "Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas," Applied Energy, Elsevier, vol. 109(C), pages 44-50.
    13. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    14. Meng, William X. & Banerjee, Subhodeep & Zhang, Xiao & Agarwal, Ramesh K., 2015. "Process simulation of multi-stage chemical-looping combustion using Aspen Plus," Energy, Elsevier, vol. 90(P2), pages 1869-1877.
    15. Baloyi, J. & Bello-Ochende, T. & Meyer, J.P., 2014. "Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor," Energy, Elsevier, vol. 70(C), pages 653-663.
    16. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    17. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    18. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    19. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    20. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Yang, Mingjun & Xu, Yujie, 2014. "Hydrogen production by enhanced-sorption chemical looping steam reforming of glycerol in moving-bed reactors," Applied Energy, Elsevier, vol. 130(C), pages 342-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1916-1923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.