IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v205y2024ics1364032124005902.html
   My bibliography  Save this article

Examining low nitrogen oxides combustion in iron ore sintering: Utilization of reductants

Author

Listed:
  • Dai, Mengbo
  • Gu, Baoshu
  • Su, Pocheng
  • Zhou, Yongcheng
  • Meng, Qingmin
  • Li, Dongsheng
  • Zhu, Mengfei
  • Chun, Tiejun

Abstract

Enhancing the reduction of carbon and nitrogen gaseous oxides in the iron ore sintering process is crucial for steel plants to meet ultra-low emission standards. The progress of technologies targeting low nitrogen oxide emissions in sintering is analyzed, focusing on gas-phase and gas-solid reactions. The primary source of nitrogen oxides in sintering is the oxidation of nitrogen-containing char. The presence of low oxygen and high temperatures near the carbon particles in the combustion zone encourages the decrease of nitrogen oxides. The capacity of ammonia, methane, hydrogen, and carbon monoxide to reduce nitrogen oxides was investigated. Injecting gaseous reductants above the sintering bed reduces solid fuel consumption and pollutants. Injecting steam also provides effective results. The cost-effective steam will pass through the combustion zone for the water-gas shift reaction, thus promoting the reduction of nitrogen by hydrogen. Nitrogen oxides heterogeneous reduction occurs primarily over char and low-valent iron oxides. Paying close attention to the removal of nitrogen oxides with the aid of iron oxides in sintering is essential. Regulating the fuel granulation could optimize the formation of calcium ferrite around combustion. Carbon oxidation and nitrogen reduction can be improved with the redox of calcium ferrite. Its final reduction product, the oxygen-deficient ferrite with highly dispersed metallic iron with calcium oxide, stabilizes in catalysis in the reducing atmosphere and can impede the suppression of oxygen. As an economically beneficial measure, fuel modification by adding oxygen-deficient ferrite was suggested to work in tandem to reduce carbon and nitrogen oxides in the process control.

Suggested Citation

  • Dai, Mengbo & Gu, Baoshu & Su, Pocheng & Zhou, Yongcheng & Meng, Qingmin & Li, Dongsheng & Zhu, Mengfei & Chun, Tiejun, 2024. "Examining low nitrogen oxides combustion in iron ore sintering: Utilization of reductants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005902
    DOI: 10.1016/j.rser.2024.114864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
    2. Yuan, Zhenhua & Chen, Zhichao & Wu, Xiaolan & Zhang, Ning & Bian, Liguo & Qiao, Yanyu & Li, Jiawei & Li, Zhengqi, 2022. "An innovative low-NOx combustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels," Energy, Elsevier, vol. 260(C).
    3. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    4. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Wei, Rufei & Meng, Kangzheng & Long, Hongming & Xu, ChunbaoCharles, 2024. "Biomass metallurgy: A sustainable and green path to a carbon-neutral metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Xin Bo & Min Jia & Xiaoda Xue & Ling Tang & Zhifu Mi & Shouyang Wang & Weigeng Cui & Xiangyu Chang & Jianhui Ruan & Guangxia Dong & Beihai Zhou & Steven J. Davis, 2021. "Effect of strengthened standards on Chinese ironmaking and steelmaking emissions," Nature Sustainability, Nature, vol. 4(9), pages 811-820, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    2. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    3. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    4. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    5. Wu, Shijie & Ren, Zongqiang & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Upcycling plastic waste into syngas by staged chemical looping gasification with modified Fe-based oxygen carriers," Applied Energy, Elsevier, vol. 353(PB).
    6. Dong, Xinyuan & Wang, Zhixing & Zhang, Junhong & Zhan, Wenlong & Gao, Lihua & He, Zhijun, 2024. "Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology," Renewable Energy, Elsevier, vol. 227(C).
    7. Ni, Zhanshi & Liu, Xiang & Shi, Hao & Tian, Junjian & Yao, Yurou & Hu, Peng & He, Liqun & Meng, Kesheng & Lin, Qizhao, 2024. "Interaction mechanism and pollutant emission characteristics of sewage sludge and corncob co-combustion," Renewable Energy, Elsevier, vol. 231(C).
    8. Ogutu B. Osoro & Edward J. Oughton & Andrew R. Wilson & Akhil Rao, 2023. "Sustainability assessment of Low Earth Orbit (LEO) satellite broadband megaconstellations," Papers 2309.02338, arXiv.org, revised Mar 2024.
    9. Zou, Xuehua & Chen, Tianhu & Zhang, Ping & Chen, Dong & He, Junkai & Dang, Yanliu & Ma, Zhiyuan & Chen, Ye & Toloueinia, Panteha & Zhu, Chengzhu & Xie, Jingjing & Liu, Haibo & Suib, Steven L., 2018. "High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production," Applied Energy, Elsevier, vol. 226(C), pages 827-837.
    10. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    11. Xin, Haihui & Tian, Wenjiang & Zhou, Banghao & Qi, Xu-yao & Li, Jianfeng & Wu, Jinfeng & Wang, De-ming, 2023. "Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen," Energy, Elsevier, vol. 268(C).
    12. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    14. Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).
    15. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    16. He, Renze & Deng, Jin & Deng, Xiaoling & Xie, Xiaoguang & Li, Yun & Yuan, Shenfu, 2022. "Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis," Energy, Elsevier, vol. 238(PC).
    17. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
    19. Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
    20. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.