IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v148y2018icp461-468.html
   My bibliography  Save this item

Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guixiang Xue & Yu Pan & Tao Lin & Jiancai Song & Chengying Qi & Zhipan Wang, 2019. "District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model," Energies, MDPI, vol. 12(11), pages 1-21, June.
  2. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
  3. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
  4. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
  5. Dukhwan Yu & Wonik Choi & Myoungsoo Kim & Ling Liu, 2020. "Forecasting Day-Ahead Hourly Photovoltaic Power Generation Using Convolutional Self-Attention Based Long Short-Term Memory," Energies, MDPI, vol. 13(15), pages 1-17, August.
  6. Mehmood, Faiza & Ghani, Muhammad Usman & Asim, Muhammad Nabeel & Shahzadi, Rehab & Mehmood, Aamir & Mahmood, Waqar, 2021. "MPF-Net: A computational multi-regional solar power forecasting framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  7. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
  8. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.
  9. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  10. Majid Hosseini & Satya Katragadda & Jessica Wojtkiewicz & Raju Gottumukkala & Anthony Maida & Terrence Lynn Chambers, 2020. "Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 13(15), pages 1-15, July.
  11. Lima, Marcello Anderson F.B. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2020. "Improving solar forecasting using Deep Learning and Portfolio Theory integration," Energy, Elsevier, vol. 195(C).
  12. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
  13. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
  14. Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
  15. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
  16. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  17. Hui Huang & Qiliang Zhu & Xueling Zhu & Jinhua Zhang, 2023. "An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation," Energies, MDPI, vol. 16(4), pages 1-20, February.
  18. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
  19. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
  20. Chen, Yibo & Zhang, Fengyi & Berardi, Umberto, 2020. "Day-ahead prediction of hourly subentry energy consumption in the building sector using pattern recognition algorithms," Energy, Elsevier, vol. 211(C).
  21. Byung-ki Jeon & Eui-Jong Kim, 2020. "Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data," Energies, MDPI, vol. 13(20), pages 1-16, October.
  22. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
  23. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
  24. Zhu, Jiebei & Li, Mingrui & Luo, Lin & Zhang, Bidan & Cui, Mingjian & Yu, Lujie, 2023. "Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction," Renewable Energy, Elsevier, vol. 208(C), pages 141-151.
  25. Yi Liu & Jun He & Yu Wang & Zong Liu & Lixun He & Yanyang Wang, 2023. "Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain," Energies, MDPI, vol. 16(14), pages 1-25, July.
  26. Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
  27. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
  28. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
  29. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
  30. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  31. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
  32. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
  33. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
  34. Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
  35. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
  36. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  37. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
  38. Prevedello, Giulio & Werth, Annette, 2021. "The benefits of sharing in off-grid microgrids: A case study in the Philippines," Applied Energy, Elsevier, vol. 303(C).
  39. Zamani Gargari, Milad & Ghaffarpour, Reza, 2020. "Reliability evaluation of multi-carrier energy system with different level of demands under various weather situation," Energy, Elsevier, vol. 196(C).
  40. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
  41. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
  42. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
  43. Shen, Hongzheng & Wang, Yue & Jiang, Kongtao & Li, Shilei & Huang, Donghua & Wu, Jiujiang & Wang, Yongqiang & Wang, Yangren & Ma, Xiaoyi, 2022. "Simulation modeling for effective management of irrigation water for winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
  44. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
  45. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
  46. Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  47. Cong Cao & Suzana Dragićević & Songnian Li, 2019. "Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
  48. Knolmajer, Attila & Bálint, Roland & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2024. "Quaternion-based irradiance calculation method applicable to solar power plants energy production," Energy, Elsevier, vol. 309(C).
  49. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
  50. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
  51. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
  52. Moreira, M.O. & Balestrassi, P.P. & Paiva, A.P. & Ribeiro, P.F. & Bonatto, B.D., 2021. "Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  53. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
  54. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
  55. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
  56. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  57. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
  58. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
  59. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
  60. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
  61. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
  62. N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
  63. Edna S. Solano & Carolina M. Affonso, 2023. "Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  64. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
  65. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
  66. Morato, Marcelo M. & Vergara-Dietrich, José & Esparcia, Eugene A. & Ocon, Joey D. & Normey-Rico, Julio E., 2021. "Assessing demand compliance and reliability in the Philippine off-grid islands with Model Predictive Control microgrid coordination," Renewable Energy, Elsevier, vol. 179(C), pages 1271-1290.
  67. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  68. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
  69. Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
  70. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
  71. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
  72. Konduru, Sudharshan & Naveen, C., 2024. "Intelligent hybrid deep learning models for enhanced shipboard solar irradiance prediction and charging station," Renewable Energy, Elsevier, vol. 235(C).
  73. Qiangsheng Bu & Shuyi Zhuang & Fei Luo & Zhigang Ye & Yubo Yuan & Tianrui Ma & Tao Da, 2024. "Improving Solar Radiation Forecasting in Cloudy Conditions by Integrating Satellite Observations," Energies, MDPI, vol. 17(24), pages 1-20, December.
  74. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
  75. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
  76. Maria Krechowicz & Adam Krechowicz & Lech Lichołai & Artur Pawelec & Jerzy Zbigniew Piotrowski & Anna Stępień, 2022. "Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning," Energies, MDPI, vol. 15(11), pages 1-21, May.
  77. Chen, Yunxiao & Bai, Mingliang & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2023. "Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting," Energy, Elsevier, vol. 284(C).
  78. Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
  79. Fei Qian & Li Chen & Jun Li & Chao Ding & Xianfu Chen & Jian Wang, 2019. "Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
  80. Hai Tao & Isa Ebtehaj & Hossein Bonakdari & Salim Heddam & Cyril Voyant & Nadhir Al-Ansari & Ravinesh Deo & Zaher Mundher Yaseen, 2019. "Designing a New Data Intelligence Model for Global Solar Radiation Prediction: Application of Multivariate Modeling Scheme," Energies, MDPI, vol. 12(7), pages 1-24, April.
  81. Jesús Polo & Nuria Martín-Chivelet & Miguel Alonso-Abella & Carlos Sanz-Saiz & José Cuenca & Marina de la Cruz, 2023. "Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods," Energies, MDPI, vol. 16(3), pages 1-12, February.
  82. Sourav Malakar & Saptarsi Goswami & Bhaswati Ganguli & Amlan Chakrabarti & Sugata Sen Roy & K. Boopathi & A. G. Rangaraj, 2022. "Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering," Energies, MDPI, vol. 15(10), pages 1-16, May.
  83. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
  84. Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
  85. Tukymbekov, Didar & Saymbetov, Ahmet & Nurgaliyev, Madiyar & Kuttybay, Nurzhigit & Dosymbetova, Gulbakhar & Svanbayev, Yeldos, 2021. "Intelligent autonomous street lighting system based on weather forecast using LSTM," Energy, Elsevier, vol. 231(C).
  86. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
  87. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
  88. Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
  89. Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).
  90. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Wang, Chao & Yu, Xiang & Jiang, Zhiqiang & Zhou, Jianzhong, 2019. "Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  91. Bisoi, Ranjeeta & Dash, Deepak Ranjan & Dash, P.K. & Tripathy, Lokanath, 2022. "An efficient robust optimized functional link broad learning system for solar irradiance prediction," Applied Energy, Elsevier, vol. 319(C).
  92. Ying Wang & Bo Feng & Qing-Song Hua & Li Sun, 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
  93. Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.
  94. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
  95. Zhang, Chao & Ma, Yunfeng & Mi, Zengqiang & Yang, Fan & Zhang, Long, 2024. "A rolling-horizon cleaning recommendation system for dust removal of industrial PV panels," Applied Energy, Elsevier, vol. 353(PB).
  96. Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
  97. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
  98. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
  99. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
  100. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
  101. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
  102. Ladislav Zjavka, 2023. "Solar and Wind Quantity 24 h—Series Prediction Using PDE-Modular Models Gradually Developed according to Spatial Pattern Similarity," Energies, MDPI, vol. 16(3), pages 1-16, January.
  103. Llinet Benavides-Cesar & Miguel-Ángel Manso-Callejo & Calimanut-Ionut Cira, 2025. "Methodology Based on BERT (Bidirectional Encoder Representations from Transformers) to Improve Solar Irradiance Prediction of Deep Learning Models Trained with Time Series of Spatiotemporal Meteorolog," Forecasting, MDPI, vol. 7(1), pages 1-21, January.
  104. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  105. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
  106. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
  107. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
  108. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
  109. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
  110. Xin Jing & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "A Multi-imputation Method to Deal With Hydro-Meteorological Missing Values by Integrating Chain Equations and Random Forest," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1159-1173, March.
  111. Abdel-Rahman Hedar & Majid Almaraashi & Alaa E. Abdel-Hakim & Mahmoud Abdulrahim, 2021. "Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces," Energies, MDPI, vol. 14(23), pages 1-29, November.
  112. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
  113. Trigo-González, Mauricio & Cortés-Carmona, Marcelo & Marzo, Aitor & Alonso-Montesinos, Joaquín & Martínez-Durbán, Mercedes & López, Gabriel & Portillo, Carlos & Batlles, Francisco Javier, 2023. "Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain," Renewable Energy, Elsevier, vol. 206(C), pages 251-262.
  114. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
  115. Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
  116. Christil Pasion & Torrey Wagner & Clay Koschnick & Steven Schuldt & Jada Williams & Kevin Hallinan, 2020. "Machine Learning Modeling of Horizontal Photovoltaics Using Weather and Location Data," Energies, MDPI, vol. 13(10), pages 1-14, May.
  117. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
  118. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
  119. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
  120. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
  121. Mohammed A. Bou-Rabee & Muhammad Yasin Naz & Imad ED. Albalaa & Shaharin Anwar Sulaiman, 2022. "BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones," Energies, MDPI, vol. 15(6), pages 1-12, March.
  122. Salimian Rizi, Behzad & Pavlak, Gregory & Cushing, Vincent & Heidarinejad, Mohammad, 2023. "Predicting uncertainty of a chiller plant power consumption using quantile random forest: A commercial building case study," Energy, Elsevier, vol. 283(C).
  123. Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
  124. Dengyong Zhang & Haixin Tong & Feng Li & Lingyun Xiang & Xiangling Ding, 2020. "An Ultra-Short-Term Electrical Load Forecasting Method Based on Temperature-Factor-Weight and LSTM Model," Energies, MDPI, vol. 13(18), pages 1-14, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.