IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i4d10.1007_s11269-021-03037-5.html
   My bibliography  Save this article

A Multi-imputation Method to Deal With Hydro-Meteorological Missing Values by Integrating Chain Equations and Random Forest

Author

Listed:
  • Xin Jing

    (Xi’an University of Technology)

  • Jungang Luo

    (Xi’an University of Technology)

  • Jingmin Wang

    (Project Construction Co.Ltd)

  • Ganggang Zuo

    (Xi’an University of Technology)

  • Na Wei

    (Xi’an University of Technology)

Abstract

Imputing hydro-meteorological missing values is essential in time series modeling. Imputation of missing values was traditionally performed after an observation period, which cannot effectively support water resources management in time. Therefore, it is necessary to deal with the missing data online. Moreover, traditional imputation methods usually consider only one observation variable and generate one set of imputations, which cannot describe the imputation uncertainty. Thus, a multiple-imputation method is proposed in this paper by integrating chain equations and random forest, namely, MICE-RF, to deal with the hydro-meteorological missing values. MICE-RF first simulates multiple imputation series to obtain the optimal imputations using the evaluation results of multiple imputation series. The traditional linear imputation, mean imputation, spline imputation, and k nearest neighbor imputation are compared to illustrate the robustness, reliability, and accuracy of the MICE-RF. According to the results, the MICE-RF provides the best imputation accuracy and can be easily implemented online.

Suggested Citation

  • Xin Jing & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "A Multi-imputation Method to Deal With Hydro-Meteorological Missing Values by Integrating Chain Equations and Random Forest," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1159-1173, March.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:4:d:10.1007_s11269-021-03037-5
    DOI: 10.1007/s11269-021-03037-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03037-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03037-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossein Bonakdari & Andrew D. Binns & Bahram Gharabaghi, 2020. "A Comparative Study of Linear Stochastic with Nonlinear Daily River Discharge Forecast Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3689-3708, September.
    2. Royston, Patrick & White, Ian R., 2011. "Multiple Imputation by Chained Equations (MICE): Implementation in Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i04).
    3. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    4. Wai Yan Lai & K. K. Kuok, 2019. "A Study on Bayesian Principal Component Analysis for Addressing Missing Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2615-2628, June.
    5. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    6. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Magee, 2023. "Earnings, Intersectional Earnings Inequality, Disappointment in One’s Life Achievements and Life (Dis)satisfaction," Journal of Happiness Studies, Springer, vol. 24(1), pages 373-396, January.
    2. Rouse, Heather L. & Choi, Ji Young & Riser, Quentin H. & Beecher, Constance C., 2020. "Multiple risks, multiple systems, and academic achievement: A nationally representative birth-to-five investigation," Children and Youth Services Review, Elsevier, vol. 108(C).
    3. Elena Ellmeier & Melanie Koch & Thomas Scheiber, 2023. "Saving behavior along the income distribution during the COVID-19 pandemic," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/23, pages 7-21.
    4. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
    7. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    8. Nerea Gómez-Fernández & Mauro Mediavilla, 2018. "Do information and communication technologies (ICT) improve educational outcomes? Evidence for Spain in PISA 2015," Working Papers 2018/20, Institut d'Economia de Barcelona (IEB).
    9. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    10. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    11. Aina M. Galmes-Panades & Escarlata Angullo & Sofía Mira-Martínez & Miquel Bennasar-Veny & Rocío Zamanillo-Campos & Rocío Gómez-Juanes & Jadwiga Konieczna & Rafael Jiménez & Maria Jesús Serrano-Ripoll , 2022. "Development and Evaluation of a Digital Health Intervention to Prevent Type 2 Diabetes in Primary Care: The PREDIABETEXT Study Protocol for a Randomised Clinical Trial," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    12. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    13. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    14. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    15. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. David Tak Wai Lui & Tingting Wu & Ivan Chi Ho Au & Xiaodong Liu & Matrix Man Him Fung & Chi Ho Lee & Carol Ho Yi Fong & Yu Cho Woo & Brian Hung Hin Lang & Kathryn Choon Beng Tan & Carlos King Ho Wong, 2023. "A Population-Based Study of SGLT2 Inhibitor-Associated Postoperative Diabetic Ketoacidosis in Patients with Type 2 Diabetes," Drug Safety, Springer, vol. 46(1), pages 53-64, January.
    17. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    18. Nerea Gómez-Fernández & Mauro Mediavilla, 2022. "Factors Influencing Teachers’ Use of ICT in Class: Evidence from a Multilevel Logistic Model," Mathematics, MDPI, vol. 10(5), pages 1-29, March.
    19. Zwysen, Wouter, 2013. "Where you go depends on where you come from: the influence of father’s employment status on young adult’s labour market experiences," ISER Working Paper Series 2013-24, Institute for Social and Economic Research.
    20. Masa, Rainier & Khan, Zoheb & Chowa, Gina, 2020. "Youth food insecurity in Ghana and South Africa: Prevalence, socioeconomic correlates, and moderation effect of gender," Children and Youth Services Review, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:4:d:10.1007_s11269-021-03037-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.