IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp333-342.html
   My bibliography  Save this article

Machine learning for site-adaptation and solar radiation forecasting

Author

Listed:
  • Narvaez, Gabriel
  • Giraldo, Luis Felipe
  • Bressan, Michael
  • Pantoja, Andres

Abstract

Optimal management for solar energy systems requires quality data to build accurate models for predicting the behavior of solar radiation. Solar irradiance and environmental data are provided by satellite and in-situ measurements. It is usual that satellite measurements present high temporal resolution with limited spatial resolution, and in-situ measurements provide high accuracy but significant missing data. This paper proposes a methodology based on machine learning algorithms that: i) takes the best of both data sources to obtain an improved spatio-temporal resolution, known as site-adaptation; and ii) provides highly accurate forecasting solar-radiation models based on deep learning on the improved data. Through a study case with real data, we show the benefits of using the proposed methodology based on machine and deep learning techniques to integrate data from different sources and to construct precise solar radiation forecasting models in regions where solar energy systems are required. Results show that machine learning models for site-adaptation performed up to 38% better than traditional methods.

Suggested Citation

  • Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:333-342
    DOI: 10.1016/j.renene.2020.11.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    3. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    4. Kisi, Ozgur & Heddam, Salim & Yaseen, Zaher Mundher, 2019. "The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model," Applied Energy, Elsevier, vol. 241(C), pages 184-195.
    5. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    6. Jiang, Hou & Lu, Ning & Qin, Jun & Tang, Wenjun & Yao, Ling, 2019. "A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    9. Yang, Dazhi, 2018. "A correct validation of the National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 152-155.
    10. Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
    11. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    12. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    13. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    14. Zambrano, Andres Felipe & Giraldo, Luis Felipe, 2020. "Solar irradiance forecasting models without on-site training measurements," Renewable Energy, Elsevier, vol. 152(C), pages 557-566.
    15. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    16. Salazar, Germán & Utrillas, Pilar & Esteve, Anna & Martínez-Lozano, José & Aristizabal, Mariana, 2013. "Estimation of daily average values of the Ångström turbidity coefficient β using a Corrected Yang Hybrid Model," Renewable Energy, Elsevier, vol. 51(C), pages 182-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jingbo & Wang, Yang & He, Yuan & Cui, Wenrui & Chao, Qingchen & Shan, Baoguo & Wang, Zheng & Yang, Xiaofan, 2024. "The energy security risk assessment of inefficient wind and solar resources under carbon neutrality in China," Applied Energy, Elsevier, vol. 360(C).
    2. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    3. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    4. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    6. Oubah Isman Okieh & Serhat Seker & Seckin Gokce & Martin Dennenmoser, 2024. "An Enhanced Forecasting Method of Daily Solar Irradiance in Southwestern France: A Hybrid Nonlinear Autoregressive with Exogenous Inputs with Long Short-Term Memory Approach," Energies, MDPI, vol. 17(16), pages 1-21, August.
    7. Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
    8. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    9. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    10. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    11. Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
    12. Christos Kyriakos & Manolis Vavalis, 2023. "Business Intelligence through Machine Learning from Satellite Remote Sensing Data," Future Internet, MDPI, vol. 15(11), pages 1-29, October.
    13. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    14. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    15. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    16. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    17. Salamalikis, Vasileios & Tzoumanikas, Panayiotis & Argiriou, Athanassios A. & Kazantzidis, Andreas, 2022. "Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 92-106.
    18. Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    2. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
    3. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    4. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    5. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    7. Polasek, Tomas & Čadík, Martin, 2023. "Predicting photovoltaic power production using high-uncertainty weather forecasts," Applied Energy, Elsevier, vol. 339(C).
    8. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    9. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    11. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    12. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    13. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    14. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    15. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    17. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    18. Abdel-Rahman Hedar & Majid Almaraashi & Alaa E. Abdel-Hakim & Mahmoud Abdulrahim, 2021. "Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces," Energies, MDPI, vol. 14(23), pages 1-29, November.
    19. Niu, Tong & Li, Jinkai & Wei, Wei & Yue, Hui, 2022. "A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting," Applied Energy, Elsevier, vol. 326(C).
    20. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:333-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.