IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i1p5-d1569452.html
   My bibliography  Save this article

Methodology Based on BERT (Bidirectional Encoder Representations from Transformers) to Improve Solar Irradiance Prediction of Deep Learning Models Trained with Time Series of Spatiotemporal Meteorological Information

Author

Listed:
  • Llinet Benavides-Cesar

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain)

  • Miguel-Ángel Manso-Callejo

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain)

  • Calimanut-Ionut Cira

    (Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain)

Abstract

Accurate solar resource forecasting is important because of the inherent variability associated with solar energy and its significant impact on the cost for energy producers. The traditional method applied in solar irradiance forecasting involves two main phases, related to (1) data selection and (2) model selection, training, and evaluation. In this study, we propose a novel end-to-end methodology for solar irradiance forecasting that starts with the search for the data and all of the preprocessing operations involved in obtaining a quality dataset, continuing by imputing missing data with the BERT (Bidirectional Encoder Representations from Transformers) model, and ending with obtaining and evaluating the predicted values. This novel methodology is based on three phases; namely, Phase_1, related to the acquisition and preparation of the data, Phase_2, related to the proposed imputation with a BERT model, and Phase_3, related to the training and prediction with new models based on deep learning. These phases of the proposed methodology can be applied in a disjointed manner, and were used on two public datasets accessible to the scientific community. Each of the proposed phases proved to be valuable for the workflow, and the application of the novel method delivered increases in performance of up to 3 percentage points (3%) when compared to the traditional approach.

Suggested Citation

  • Llinet Benavides-Cesar & Miguel-Ángel Manso-Callejo & Calimanut-Ionut Cira, 2025. "Methodology Based on BERT (Bidirectional Encoder Representations from Transformers) to Improve Solar Irradiance Prediction of Deep Learning Models Trained with Time Series of Spatiotemporal Meteorolog," Forecasting, MDPI, vol. 7(1), pages 1-21, January.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:5-:d:1569452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    2. Llinet Benavides Cesar & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira & Ramon Alcarria, 2023. "CyL-GHI: Global Horizontal Irradiance Dataset Containing 18 Years of Refined Data at 30-Min Granularity from 37 Stations Located in Castile and León (Spain)," Data, MDPI, vol. 8(4), pages 1-21, March.
    3. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    4. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    2. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
    3. Jesús Polo & Nuria Martín-Chivelet & Miguel Alonso-Abella & Carlos Sanz-Saiz & José Cuenca & Marina de la Cruz, 2023. "Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods," Energies, MDPI, vol. 16(3), pages 1-12, February.
    4. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    7. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    8. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    9. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    10. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    11. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    12. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    13. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    14. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    15. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    17. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    18. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    19. Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    20. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:5-:d:1569452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.