IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp2300-2308.html
   My bibliography  Save this article

Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks

Author

Listed:
  • Cheng, Hsu-Yung
  • Yu, Chih-Chang
  • Lin, Chih-Lung

Abstract

In this work, a day-ahead to week-ahead solar irradiance prediction mechanism based on convolutional Long Short-Term Memory (LSTM) model is proposed. The system takes hourly irradiance data from several days previous to the prediction day as the input. Then, features are extracted from the input data using one dimensional convolutional filters. The extracted features from different days are concatenated and serve as the input of the LSTM network. The output of the LSTM is further concatenated with selected original data to emphasize its importance and enhance the prediction results. Afterwards, a fully connected layer is used to produce the final prediction output. The proposed framework can be trained using a relatively small amount of training data within the duration of only two months. Therefore, it has the advantage of being applicable in the initial deployment phase when the amount of training data is limited. The proposed system has been validated using a highly challenging dataset collected in Taiwan with tropical and subtropical marine island climate.

Suggested Citation

  • Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:2300-2308
    DOI: 10.1016/j.renene.2021.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101199X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    2. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    3. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
    4. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    5. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    6. Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
    7. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
    8. Wu, Wei & Tang, Xiaoping & Lv, Jiake & Yang, Chao & Liu, Hongbin, 2021. "Potential of Bayesian additive regression trees for predicting daily global and diffuse solar radiation in arid and humid areas," Renewable Energy, Elsevier, vol. 177(C), pages 148-163.
    9. Sodano, Daniel & DeCarolis, Joseph F. & Rodrigo de Queiroz, Anderson & Johnson, Jeremiah X., 2021. "The symbiotic relationship of solar power and energy storage in providing capacity value," Renewable Energy, Elsevier, vol. 177(C), pages 823-832.
    10. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    11. Dash, Deepak Ranjan & Dash, P.K. & Bisoi, Ranjeeta, 2021. "Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm," Renewable Energy, Elsevier, vol. 174(C), pages 513-537.
    12. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsu-Yung Cheng & Chih-Chang Yu, 2024. "Solar Power Generation Forecast Using Multivariate Convolution Gated Recurrent Unit Network," Energies, MDPI, vol. 17(13), pages 1-18, June.
    2. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    3. Rameshrao, Awagan Goyal & Koley, Ebha & Ghosh, Subhojit, 2022. "A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency," Renewable Energy, Elsevier, vol. 198(C), pages 75-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Hsu-Yung, 2017. "Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting," Renewable Energy, Elsevier, vol. 104(C), pages 281-289.
    2. Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
    3. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    4. Abdel-Rahman Hedar & Majid Almaraashi & Alaa E. Abdel-Hakim & Mahmoud Abdulrahim, 2021. "Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces," Energies, MDPI, vol. 14(23), pages 1-29, November.
    5. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    6. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    7. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
    8. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    9. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    12. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    16. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    17. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    18. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    19. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    20. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:2300-2308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.