IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221011506.html
   My bibliography  Save this article

Intelligent autonomous street lighting system based on weather forecast using LSTM

Author

Listed:
  • Tukymbekov, Didar
  • Saymbetov, Ahmet
  • Nurgaliyev, Madiyar
  • Kuttybay, Nurzhigit
  • Dosymbetova, Gulbakhar
  • Svanbayev, Yeldos

Abstract

Existing traditional street lighting systems are characterized by a high level of energy consumption compared to automated intelligent systems that offer different operating modes depending on traffic and power system load. The most promising energy sources systems are hybrid installations that switch the load to the grid in adverse weather conditions. Such systems may increase the energy efficiency of the street lighting system, but they are not completely autonomous. In this case, the most important problem is to provide the street lighting system with energy in adverse weather conditions. In this paper, an autonomous street lighting system with adaptive energy consumption based on weather forecast was shown. The proposed street lighting system is completely independent of traditional power sources and is completely powered by solar panels. The main energy consumers of a street lighting system are lamps. The consumption of lamps can be changed to the minimum brightness level required by outdoor lighting standards. Forecasts of energy generation by solar panels can be obtained using LSTM. It is based on weather and solar radiation forecasts data for the coming days. The brightness levels of lamps are calculated and changed using the methods proposed in this paper. The probability of reaching the critical level of batteries does not exceed 0.10% and fluctuates around 0.05% most of the time when simulating for 1000 days under random weather conditions. Simulation of energy consumption by the street lighting system using the proposed method shows stable and sustainable performance in Almaty, Kazakhstan. The obtained results in this work can be used for designing autonomous street lighting and outdoor lighting systems.

Suggested Citation

  • Tukymbekov, Didar & Saymbetov, Ahmet & Nurgaliyev, Madiyar & Kuttybay, Nurzhigit & Dosymbetova, Gulbakhar & Svanbayev, Yeldos, 2021. "Intelligent autonomous street lighting system based on weather forecast using LSTM," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011506
    DOI: 10.1016/j.energy.2021.120902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Pengzhan & Liu, Mengchao & Chen, Chuanxi & Shang, Xin, 2019. "A battery management strategy in microgrid for personalized customer requirements," Energy, Elsevier, vol. 189(C).
    2. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    3. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Alberto Gutierrez-Escolar & Ana Castillo-Martinez & Jose M. Gomez-Pulido & Jose-Maria Gutierrez-Martinez & Zlatko Stapic & Jose-Amelio Medina-Merodio, 2015. "A Study to Improve the Quality of Street Lighting in Spain," Energies, MDPI, vol. 8(2), pages 1-19, January.
    5. Kovács, András & Bátai, Roland & Csáji, Balázs Csanád & Dudás, Péter & Háy, Borbála & Pedone, Gianfranco & Révész, Tibor & Váncza, József, 2016. "Intelligent control for energy-positive street lighting," Energy, Elsevier, vol. 114(C), pages 40-51.
    6. Gao, Mingming & Li, Jianjing & Hong, Feng & Long, Dongteng, 2019. "Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM," Energy, Elsevier, vol. 187(C).
    7. Fouilloy, Alexis & Voyant, Cyril & Notton, Gilles & Motte, Fabrice & Paoli, Christophe & Nivet, Marie-Laure & Guillot, Emmanuel & Duchaud, Jean-Laurent, 2018. "Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability," Energy, Elsevier, vol. 165(PA), pages 620-629.
    8. Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
    9. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    10. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    11. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    12. Beccali, Marco & Bonomolo, Marina & Ciulla, Giuseppina & Galatioto, Alessandra & Lo Brano, Valerio, 2015. "Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)," Energy, Elsevier, vol. 92(P3), pages 394-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Jaskowski & Piotr Tomczuk & Marcin Chrzanowicz, 2022. "Construction of a Measurement System with GPS RTK for Operational Control of Street Lighting," Energies, MDPI, vol. 15(23), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    2. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    3. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    4. Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
    5. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    6. Antonio Ocana-Miguel & Jose Ramon Andres-Diaz & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón, 2018. "Analysis of the Viability of Street Light Programming Using Commutation Cycles in the Power Line," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    7. Tserenpurev Chuluunsaikhan & Jeong-Hun Kim & Yoonsung Shin & Sanghyun Choi & Aziz Nasridinov, 2022. "Feasibility Study on the Influence of Data Partition Strategies on Ensemble Deep Learning: The Case of Forecasting Power Generation in South Korea," Energies, MDPI, vol. 15(20), pages 1-20, October.
    8. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    9. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    10. Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    11. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    12. Ladislav Zjavka, 2021. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation," Energies, MDPI, vol. 14(22), pages 1-14, November.
    13. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    14. Hongbo Gao & Shuang Qiu & Jun Fang & Nan Ma & Jiye Wang & Kun Cheng & Hui Wang & Yidong Zhu & Dawei Hu & Hengyu Liu & Jun Wang, 2023. "Short-Term Prediction of PV Power Based on Combined Modal Decomposition and NARX-LSTM-LightGBM," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    15. Mellit, A. & Pavan, A. Massi & Lughi, V., 2021. "Deep learning neural networks for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 172(C), pages 276-288.
    16. Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    17. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    18. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    19. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    20. Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.