IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2243-d774742.html
   My bibliography  Save this article

An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants

Author

Listed:
  • Muhammad Naveed Akhter

    (Department of Electrical Engineering, Rachna College of Engineering and Technology, University of Engineering and Technology Lahore, Gujranwala 52250, Pakistan
    Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
    Center of Research Excellence in Renewable Energy and Power Systems, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia)

  • Hazlie Mokhlis

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Ziyad M. Almohaimeed

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraidah 51452, Saudi Arabia)

  • Munir Azam Muhammad

    (Department of Electrical Engineering, Main Campus, Iqra University, Karachi 75500, Pakistan)

  • Anis Salwa Mohd Khairuddin

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Rizwan Akram

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraidah 51452, Saudi Arabia)

  • Muhammad Majid Hussain

    (Department of Electrical and Electronic Engineering, University of South Wales, Pontypirdd CF37 1DL, UK)

Abstract

Incorporating solar energy into a grid necessitates an accurate power production forecast for photovoltaic (PV) facilities. In this research, output PV power was predicted at an hour ahead on yearly basis for three different PV plants based on polycrystalline (p-si), monocrystalline (m-si), and thin-film (a-si) technologies over a four-year period. Wind speed, module temperature, ambiance, and solar irradiation were among the input characteristics taken into account. Each PV plant power output was the output parameter. A deep learning method (RNN-LSTM) was developed and evaluated against existing techniques to forecast the PV output power of the selected PV plant. The proposed technique was compared with regression (GPR, GPR (PCA)), hybrid ANFIS (grid partitioning, subtractive clustering and FCM) and machine learning (ANN, SVR, SVR (PCA)) methods. Furthermore, different LSTM structures were also investigated, with recurrent neural networks (RNN) based on 2019 data to determine the best structure. The following parameters of prediction accuracy measure were considered: RMSE, MSE, MAE, correlation ( r ) and determination ( R 2 ) coefficients. In comparison to all other approaches, RNN-LSTM had higher prediction accuracy on the basis of minimum (RMSE and MSE) and maximum ( r and R 2 ). The p-si, m-si and a-si PV plants showed the lowest RMSE values of 26.85 W/m 2 , 19.78 W/m 2 and 39.2 W/m 2 respectively. Moreover, the proposed method was found to be robust and flexible in forecasting the output power of the three considered different photovoltaic plants.

Suggested Citation

  • Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2243-:d:774742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mellit, A. & Kalogirou, S.A. & Hontoria, L. & Shaari, S., 2009. "Artificial intelligence techniques for sizing photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 406-419, February.
    2. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Lima, Francisco J.L. & Martins, Fernando R. & Pereira, Enio B. & Lorenz, Elke & Heinemann, Detlev, 2016. "Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 807-818.
    4. Cheng, Hsu-Yung, 2017. "Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting," Renewable Energy, Elsevier, vol. 104(C), pages 281-289.
    5. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    6. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    7. Tang, Pingzhou & Chen, Di & Hou, Yushuo, 2016. "Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 243-248.
    8. De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
    9. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Prema, V. & Rao, K. Uma, 2015. "Development of statistical time series models for solar power prediction," Renewable Energy, Elsevier, vol. 83(C), pages 100-109.
    11. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    12. Bou-Rabee, Mohammed & Sulaiman, Shaharin A. & Saleh, Magdy Saad & Marafi, Suhaila, 2017. "Using artificial neural networks to estimate solar radiation in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 434-438.
    13. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    14. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    15. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    16. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    17. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    18. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    19. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    20. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    21. Xin-gang, Zhao & You, Zhang, 2018. "Technological progress and industrial performance: A case study of solar photovoltaic industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 929-936.
    22. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    2. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    2. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    3. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    4. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    5. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    6. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    7. Dash, Deepak Ranjan & Dash, P.K. & Bisoi, Ranjeeta, 2021. "Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm," Renewable Energy, Elsevier, vol. 174(C), pages 513-537.
    8. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    9. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    10. Leidy Gutiérrez & Julian Patiño & Eduardo Duque-Grisales, 2021. "A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction," Energies, MDPI, vol. 14(15), pages 1-16, July.
    11. Zhang, Chao & Ma, Yunfeng & Mi, Zengqiang & Yang, Fan & Zhang, Long, 2024. "A rolling-horizon cleaning recommendation system for dust removal of industrial PV panels," Applied Energy, Elsevier, vol. 353(PB).
    12. Zhu, Jiebei & Li, Mingrui & Luo, Lin & Zhang, Bidan & Cui, Mingjian & Yu, Lujie, 2023. "Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction," Renewable Energy, Elsevier, vol. 208(C), pages 141-151.
    13. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    14. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    15. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    16. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    17. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    18. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
    19. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    20. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2243-:d:774742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.