IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v151y2015icp355-366.html
   My bibliography  Save this item

The Wind Integration National Dataset (WIND) Toolkit

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
  2. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
  3. Alberto Boretti & Stefania Castelletto, 2019. "Low-Frequency Wind Energy Variability in the Continental Contiguous United States," Energies, MDPI, vol. 13(1), pages 1-30, December.
  4. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
  5. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
  6. Christina Ortega & Amin Younes & Mark Severy & Charles Chamberlin & Arne Jacobson, 2020. "Resource and Load Compatibility Assessment of Wind Energy Offshore of Humboldt County, California," Energies, MDPI, vol. 13(21), pages 1-27, October.
  7. Travis C. Douville & Dhruv Bhatnagar, 2021. "Exploring the Grid Value of Offshore Wind Energy in Oregon," Energies, MDPI, vol. 14(15), pages 1-16, July.
  8. Rachunok, Benjamin & Staid, Andrea & Watson, Jean-Paul & Woodruff, David L., 2020. "Assessment of wind power scenario creation methods for stochastic power systems operations," Applied Energy, Elsevier, vol. 268(C).
  9. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
  10. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
  11. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
  12. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
  13. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
  14. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
  15. Kwabena Addo Pambour & Rostand Tresor Sopgwi & Bri-Mathias Hodge & Carlo Brancucci, 2018. "The Value of Day-Ahead Coordination of Power and Natural Gas Network Operations," Energies, MDPI, vol. 11(7), pages 1-23, June.
  16. Tanner, Sophia & Burnett, Wesley & Maguire, Karen & Winikoff, Justin, 2024. "Blown Away: The Influence of Wind Farms on Agricultural Land Values," 2024 Annual Meeting, July 28-30, New Orleans, LA 343970, Agricultural and Applied Economics Association.
  17. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
  18. Li, Yanting & Peng, Xinghao & Zhang, Yu, 2022. "Forecasting methods for wind power scenarios of multiple wind farms based on spatio-temporal dependency structure," Renewable Energy, Elsevier, vol. 201(P1), pages 950-960.
  19. Mohammadi Fathabad, Abolhassan & Cheng, Jianqiang & Pan, Kai & Yang, Boshi, 2023. "Asymptotically tight conic approximations for chance-constrained AC optimal power flow," European Journal of Operational Research, Elsevier, vol. 305(2), pages 738-753.
  20. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
  21. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
  22. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
  23. Shawhan, Daniel & Funke, Christoph & Witkin, Steven, 2020. "Benefits of Energy Technology Innovation Part 1: Power Sector Modeling Results," RFF Working Paper Series 20-19, Resources for the Future.
  24. Hanes, Rebecca J. & Gopalakrishnan, Varsha & Bakshi, Bhavik R., 2017. "Synergies and trade-offs in renewable energy landscapes: Balancing energy production with economics and ecosystem services," Applied Energy, Elsevier, vol. 199(C), pages 25-44.
  25. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
  26. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
  27. Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
  28. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.
  29. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
  30. Jia Zhou & Hany Abdel-Khalik & Paul Talbot & Cristian Rabiti, 2021. "A Hybrid Energy System Workflow for Energy Portfolio Optimization," Energies, MDPI, vol. 14(15), pages 1-28, July.
  31. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
  32. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
  33. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
  34. Conlon, Terence & Waite, Michael & Modi, Vijay, 2019. "Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid," Applied Energy, Elsevier, vol. 250(C), pages 1085-1098.
  35. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
  36. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
  37. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
  38. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
  39. Robert Garner & Zahir Dehouche, 2023. "Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community," Energies, MDPI, vol. 16(21), pages 1-23, October.
  40. Lorenc Malka & Ilirian Konomi & Ardit Gjeta & Skerdi Drenova & Jugert Gjikoka, 2020. "An Approach to the Large-scale Integration of Wind Energy in Albania," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 327-343.
  41. Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
  42. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
  43. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
  44. Liu, Yichao & Chen, Daoyi & Li, Sunwei & Chan, P.W., 2018. "Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling," Energy, Elsevier, vol. 160(C), pages 582-596.
  45. Grant, Elenya & Clark, Caitlyn E., 2024. "Hybrid power plants: An effective way of decreasing loss-of-load expectation," Energy, Elsevier, vol. 307(C).
  46. Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
  47. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
  48. Arnas Uselis & Mantas Lukoševičius & Lukas Stasytis, 2020. "Localized Convolutional Neural Networks for Geospatial Wind Forecasting," Energies, MDPI, vol. 13(13), pages 1-21, July.
  49. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
  50. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2020. "Estimating revenues from offshore wind-storage systems: The importance of advanced battery models," Applied Energy, Elsevier, vol. 276(C).
  51. Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
  52. Julien Walzberg & Annika Eberle, 2023. "Modeling Systems’ Disruption and Social Acceptance—A Proof-of-Concept Leveraging Reinforcement Learning," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
  53. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao, 2024. "Short-term wind speed interval prediction using improved quality-driven loss based gated multi-scale convolutional sequence model," Energy, Elsevier, vol. 300(C).
  54. Sandhu, Rimple & Tripp, Charles & Quon, Eliot & Thedin, Regis & Lawson, Michael & Brandes, David & Farmer, Christopher J. & Miller, Tricia A. & Draxl, Caroline & Doubrawa, Paula & Williams, Lindy & Du, 2022. "Stochastic agent-based model for predicting turbine-scale raptor movements during updraft-subsidized directional flights," Ecological Modelling, Elsevier, vol. 466(C).
  55. Komal Naz & Fasiha Zainab & Khawaja Khalid Mehmood & Syed Basit Ali Bukhari & Hassan Abdullah Khalid & Chul-Hwan Kim, 2021. "An Optimized Framework for Energy Management of Multi-Microgrid Systems," Energies, MDPI, vol. 14(19), pages 1-15, September.
  56. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
  57. Duarte Jacondino, William & Nascimento, Ana Lucia da Silva & Calvetti, Leonardo & Fisch, Gilberto & Augustus Assis Beneti, Cesar & da Paz, Sheila Radman, 2021. "Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model," Energy, Elsevier, vol. 230(C).
  58. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
  59. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
  60. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
  61. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
  62. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
  63. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
  64. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
  65. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
  66. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
  67. Yang, Jaemo & Sengupta, Manajit & Xie, Yu & Shin, Hyeyum Hailey, 2023. "Developing a 20-year high-resolution wind data set for Puerto Rico," Energy, Elsevier, vol. 285(C).
  68. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
  69. Wen, Honglin, 2024. "Probabilistic wind power forecasting resilient to missing values: An adaptive quantile regression approach," Energy, Elsevier, vol. 300(C).
  70. Lin, Qingcheng & Cai, Huiling & Liu, Hanwei & Li, Xuefeng & Xiao, Hui, 2024. "A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection," Energy, Elsevier, vol. 288(C).
  71. Dimanchev, Emil G. & Hodge, Joshua L. & Parsons, John E., 2021. "The role of hydropower reservoirs in deep decarbonization policy," Energy Policy, Elsevier, vol. 155(C).
  72. Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
  73. Chen, Yaoran & Cai, Candong & Cao, Leilei & Zhang, Dan & Kuang, Limin & Peng, Yan & Pu, Huayan & Wu, Chuhan & Zhou, Dai & Cao, Yong, 2024. "WindFix: Harnessing the power of self-supervised learning for versatile imputation of offshore wind speed time series," Energy, Elsevier, vol. 287(C).
  74. Xie, Yuying & Li, Chaoshun & Tang, Geng & Liu, Fangjie, 2021. "A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting," Energy, Elsevier, vol. 216(C).
  75. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
  76. Cole, Wesley & Greer, Daniel & Ho, Jonathan & Margolis, Robert, 2020. "Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage," Applied Energy, Elsevier, vol. 279(C).
  77. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
  78. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  79. Dylan Harrison-Atlas & Galen Maclaurin & Eric Lantz, 2021. "Spatially-Explicit Prediction of Capacity Density Advances Geographic Characterization of Wind Power Technical Potential," Energies, MDPI, vol. 14(12), pages 1-28, June.
  80. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  81. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Naidu, Natansh K. & Savsani, Vimal, 2017. "Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations," Energy, Elsevier, vol. 118(C), pages 622-631.
  82. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
  83. Shi, Jinhao & Wang, Bo & Luo, Kaiyi & Wu, Yifei & Zhou, Min & Watada, Junzo, 2023. "Ultra-short-term wind power interval prediction based on multi-task learning and generative critic networks," Energy, Elsevier, vol. 272(C).
  84. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  85. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
  86. Stanley, Andrew P.J. & King, Jennifer, 2022. "Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant," Applied Energy, Elsevier, vol. 317(C).
  87. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
  88. Bromley-Dulfano, Isaac & Florez, Julian & Craig, Michael T., 2021. "Reliability benefits of wide-area renewable energy planning across the Western United States," Renewable Energy, Elsevier, vol. 179(C), pages 1487-1499.
  89. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
  90. Lopez, Anthony & Mai, Trieu & Lantz, Eric & Harrison-Atlas, Dylan & Williams, Travis & Maclaurin, Galen, 2021. "Land use and turbine technology influences on wind potential in the United States," Energy, Elsevier, vol. 223(C).
  91. Murphy, Sinnott & Lavin, Luke & Apt, Jay, 2020. "Resource adequacy implications of temperature-dependent electric generator availability," Applied Energy, Elsevier, vol. 262(C).
  92. Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
  93. Ignacio Losada Carreño & Michael T. Craig & Michael Rossol & Moetasim Ashfaq & Fulden Batibeniz & Sue Ellen Haupt & Caroline Draxl & Bri-Mathias Hodge & Carlo Brancucci, 2020. "Potential impacts of climate change on wind and solar electricity generation in Texas," Climatic Change, Springer, vol. 163(2), pages 745-766, November.
  94. Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
  95. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
  96. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
  97. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
  98. Ruijin Zhu & Bo Tang & Wenhai Wei, 2022. "Ensemble Learning-Based Reactive Power Optimization for Distribution Networks," Energies, MDPI, vol. 15(6), pages 1-15, March.
  99. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
  100. Tavakkoli, Sakineh & Macknick, Jordan & Heath, Garvin A. & Jordaan, Sarah M., 2021. "Spatiotemporal energy infrastructure datasets for the United States: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  101. Xiang, Ling & Fu, Xiaomengting & Yao, Qingtao & Zhu, Guopeng & Hu, Aijun, 2024. "A novel model for ultra-short term wind power prediction based on Vision Transformer," Energy, Elsevier, vol. 294(C).
  102. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
  103. Thomas Falconer & Jalal Kazempour & Pierre Pinson, 2023. "Towards Replication-Robust Data Markets," Papers 2310.06000, arXiv.org, revised Oct 2024.
  104. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
  105. Waite, Michael & Modi, Vijay, 2019. "Impact of deep wind power penetration on variability at load centers," Applied Energy, Elsevier, vol. 235(C), pages 1048-1060.
  106. Abraham, Aliza & Hong, Jiarong, 2021. "Operational-dependent wind turbine wake impact on surface momentum flux," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  107. Mohammad Seydali Seyf Abad & Jin Ma & Ahmad Shabir Ahmadyar & Hesamoddin Marzooghi, 2018. "Distributionally Robust Distributed Generation Hosting Capacity Assessment in Distribution Systems," Energies, MDPI, vol. 11(11), pages 1-19, November.
  108. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
  109. Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
  110. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
  111. Wang, Yi-Hui & Walter, Ryan K. & White, Crow & Farr, Hayley & Ruttenberg, Benjamin I., 2019. "Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast," Renewable Energy, Elsevier, vol. 133(C), pages 343-353.
  112. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
  113. Paul A Rabie & Brandi Welch-Acosta & Kristen Nasman & Susan Schumacher & Steve Schueller & Jeffery Gruver, 2022. "Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
  114. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
  115. James, Eric P. & Benjamin, Stanley G. & Marquis, Melinda, 2017. "A unified high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model," Renewable Energy, Elsevier, vol. 102(PB), pages 390-405.
  116. Gorg Abdelmassih & Mohammed Al-Numay & Abdelali El Aroudi, 2021. "Map Optimization Fuzzy Logic Framework in Wind Turbine Site Selection with Application to the USA Wind Farms," Energies, MDPI, vol. 14(19), pages 1-15, September.
  117. Ranalli, Joseph & Alhamwi, Alaa, 2020. "Configurations of renewable power generation in cities using open source approaches: With Philadelphia case study," Applied Energy, Elsevier, vol. 269(C).
  118. James M. Wilczak & Elena Akish & Antonietta Capotondi & Gilbert P. Compo, 2024. "Evaluation and Bias Correction of the ERA5 Reanalysis over the United States for Wind and Solar Energy Applications," Energies, MDPI, vol. 17(7), pages 1-36, March.
  119. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
  120. Brunner, Eric & Hoen, Ben & Hyman, Joshua, 2022. "School district revenue shocks, resource allocations, and student achievement: Evidence from the universe of U.S. wind energy installations," Journal of Public Economics, Elsevier, vol. 206(C).
  121. Jiafei Huan & Li Deng & Yue Zhu & Shangguang Jiang & Fei Qi, 2024. "Short-to-Medium-Term Wind Power Forecasting through Enhanced Transformer and Improved EMD Integration," Energies, MDPI, vol. 17(10), pages 1-22, May.
  122. Jaume Manero & Javier Béjar & Ulises Cortés, 2019. "“Dust in the Wind...”, Deep Learning Application to Wind Energy Time Series Forecasting," Energies, MDPI, vol. 12(12), pages 1-20, June.
  123. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.