IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v221y2018icp348-357.html
   My bibliography  Save this article

Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations

Author

Listed:
  • Tang, Chenghui
  • Wang, Yishen
  • Xu, Jian
  • Sun, Yuanzhang
  • Zhang, Baosen

Abstract

Consideration of the spatial and temporal correlations of multiple renewable power plants is critical to the efficient operation of power systems with high amounts of renewable power integration. However, existing methods either assumes that each plant behaves independently or require high computational complexity to capture the joint behavior of the plants. We propose an efficient dynamic scenario generation method based on Gibbs sampling to overcome these challenges. Firstly, the generated renewable power scenarios are drawn from the jointly distribution that accurately captures statistical behaviors in the historical data of multiple renewable power plants. Secondly, the sampling complexity only grows linearly with the number of renewable power plants, making our approach applicable to large systems. Based on this sampling technique, we propose a distribution-based model and a scenario-based models for the economic dispatch problem and show when they should be used based on the desired accuracy and available computational resources. Through a comprehensive case study, we show that compared with existing methods, the proposed approaches are more consistent with actual renewable power generation observed in practice, and can lower the operation cost while maintaining appropriate risk levels.

Suggested Citation

  • Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
  • Handle: RePEc:eee:appene:v:221:y:2018:i:c:p:348-357
    DOI: 10.1016/j.apenergy.2018.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918304203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    2. Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José, 2016. "Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants," Applied Energy, Elsevier, vol. 162(C), pages 21-30.
    3. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    4. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    5. Hagspiel, Simeon & Papaemannouil, Antonis & Schmid, Matthias & Andersson, Göran, 2012. "Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid," Applied Energy, Elsevier, vol. 96(C), pages 33-44.
    6. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    7. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    8. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    9. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    10. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    2. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    3. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Probabilistic solar power forecasting based on weather scenario generation," Applied Energy, Elsevier, vol. 266(C).
    4. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    5. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    6. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    7. Chapaloglou, Spyridon & Varagnolo, Damiano & Marra, Francesco & Tedeschi, Elisabetta, 2022. "Data-driven energy management of isolated power systems under rapidly varying operating conditions," Applied Energy, Elsevier, vol. 314(C).
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    10. Jian Tang & Jianfei Liu & Jinghan Wu & Guofeng Jin & Heran Kang & Zhao Zhang & Nantian Huang, 2023. "RAC-GAN-Based Scenario Generation for Newly Built Wind Farm," Energies, MDPI, vol. 16(5), pages 1-17, March.
    11. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
    12. Dirin, Sepehr & Rahimiyan, Morteza & Baringo, Luis, 2023. "Optimal offering strategy for wind-storage systems under correlated wind production," Applied Energy, Elsevier, vol. 333(C).
    13. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    2. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    3. Rachunok, Benjamin & Staid, Andrea & Watson, Jean-Paul & Woodruff, David L., 2020. "Assessment of wind power scenario creation methods for stochastic power systems operations," Applied Energy, Elsevier, vol. 268(C).
    4. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    5. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    6. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    7. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    8. Rahimiyan, Morteza, 2014. "A statistical cognitive model to assess impact of spatially correlated wind production on market behaviors," Applied Energy, Elsevier, vol. 122(C), pages 62-72.
    9. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    10. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    11. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    12. Jae-Kun Lyu & Jae-Haeng Heo & Jong-Keun Park & Yong-Cheol Kang, 2013. "Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects," Energies, MDPI, vol. 6(11), pages 1-21, October.
    13. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    14. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    15. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    16. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    17. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    18. Li, Yanting & Peng, Xinghao & Zhang, Yu, 2022. "Forecasting methods for wind power scenarios of multiple wind farms based on spatio-temporal dependency structure," Renewable Energy, Elsevier, vol. 201(P1), pages 950-960.
    19. Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:221:y:2018:i:c:p:348-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.