IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028335.html
   My bibliography  Save this article

Developing a 20-year high-resolution wind data set for Puerto Rico

Author

Listed:
  • Yang, Jaemo
  • Sengupta, Manajit
  • Xie, Yu
  • Shin, Hyeyum Hailey

Abstract

The purpose of this study is to develop a high-resolution wind resource data set for Puerto Rico as part of the wind resource assessment in the Puerto Rico Grid Resilience and Transition to 100 % Renewable Energy Study (PR100) project. The Weather and Research and Forecasting (WRF) is used to model 20-years (2001–2020) of wind resource data on a 3-km grid for the Puerto Rico region. Because accurately representing the planetary boundary layer (PBL)-physics in the WRF is key to accurately model low-level wind speed, 11 different PBL schemes are examined and evaluated to find a WRF configuration that can provide the most accurate wind data. The modeled wind speeds are validated with buoy observations, and the Shin-Hong PBL scheme is selected to generate the final wind data set. The overall results demonstrate that the high-resolution data correctly represents the climate of Puerto Rico (e.g., a dominant easterly trade wind). At 160 m above ground, the southern regions of Puerto Rico show strong offshore wind speed (>8 m/s on average) throughout the daytime and nighttime. For land-based wind, average wind speed ranges from 5 m/s–7 m/s during daytime, whereas notable high wind speeds (>9 m/s) appear in the mountain regions during nighttime.

Suggested Citation

  • Yang, Jaemo & Sengupta, Manajit & Xie, Yu & Shin, Hyeyum Hailey, 2023. "Developing a 20-year high-resolution wind data set for Puerto Rico," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028335
    DOI: 10.1016/j.energy.2023.129439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    2. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    3. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
    4. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    5. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    6. Giannaros, Theodore M. & Melas, Dimitrios & Ziomas, Ioannis, 2017. "Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece," Renewable Energy, Elsevier, vol. 102(PA), pages 190-198.
    7. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    8. Mohammadpour Penchah, Mohammadreza & Malakooti, Hossein & Satkin, Mohammad, 2017. "Evaluation of planetary boundary layer simulations for wind resource study in east of Iran," Renewable Energy, Elsevier, vol. 111(C), pages 1-10.
    9. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
    10. Dayal, Kunal K. & Bellon, Gilles & Cater, John E. & Kingan, Michael J. & Sharma, Rajnish N., 2021. "High-resolution mesoscale wind-resource assessment of Fiji using the Weather Research and Forecasting (WRF) model," Energy, Elsevier, vol. 232(C).
    11. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    12. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    13. De Meij, A. & Vinuesa, J.-F. & Maupas, V. & Waddle, J. & Price, I. & Yaseen, B. & Ismail, A., 2016. "Wind energy resource mapping of Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 551-562.
    14. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Jeffrey A. Bennett & Claire N. Trevisan & Joseph F. DeCarolis & Cecilio Ortiz-García & Marla Pérez-Lugo & Bevin T. Etienne & Andres F. Clarens, 2021. "Extending energy system modelling to include extreme weather risks and application to hurricane events in Puerto Rico," Nature Energy, Nature, vol. 6(3), pages 240-249, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayal, Kunal K. & Bellon, Gilles & Cater, John E. & Kingan, Michael J. & Sharma, Rajnish N., 2021. "High-resolution mesoscale wind-resource assessment of Fiji using the Weather Research and Forecasting (WRF) model," Energy, Elsevier, vol. 232(C).
    2. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
    4. Perini de Souza, Noele Bissoli & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Wind mapping using the mesoscale WRF model in a tropical region of Brazil," Energy, Elsevier, vol. 240(C).
    5. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    6. James M. Wilczak & Elena Akish & Antonietta Capotondi & Gilbert P. Compo, 2024. "Evaluation and Bias Correction of the ERA5 Reanalysis over the United States for Wind and Solar Energy Applications," Energies, MDPI, vol. 17(7), pages 1-36, March.
    7. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
    9. Yang, Xinrong & Jiang, Xin & Liang, Shijing & Qin, Yingzuo & Ye, Fan & Ye, Bin & Xu, Jiayu & He, Xinyue & Wu, Jie & Dong, Tianyun & Cai, Xitian & Xu, Rongrong & Zeng, Zhenzhong, 2024. "Spatiotemporal variation of power law exponent on the use of wind energy," Applied Energy, Elsevier, vol. 356(C).
    10. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    11. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    12. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    14. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    15. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    16. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    17. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    18. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    19. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2024. "Prediction of hourly wind speed time series at unsampled locations using machine learning," Energy, Elsevier, vol. 299(C).
    20. D’Isidoro, Massimo & Briganti, Gino & Vitali, Lina & Righini, Gaia & Adani, Mario & Guarnieri, Guido & Moretti, Lorenzo & Raliselo, Muso & Mahahabisa, Mabafokeng & Ciancarella, Luisella & Zanini, Gabr, 2020. "Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution," Renewable Energy, Elsevier, vol. 158(C), pages 114-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.