IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp91-100.html
   My bibliography  Save this article

Seasonal forecasts of wind power generation

Author

Listed:
  • Lledó, Ll.
  • Torralba, V.
  • Soret, A.
  • Ramon, J.
  • Doblas-Reyes, F.J.

Abstract

The energy sector is highly dependent on climate variability for electricity generation, maintenance activities and demand. In recent years, a few climate services have appeared that provide tailored information for the energy sector. In particular, seasonal climate predictions of wind speed have proven useful to the wind power industry. However, most of the service users are ultimately interested in forecasts of electricity generation instead of wind. Although power generation depends on many factors other than wind conditions, the capacity factor is a suitable indicator to quantify the impact of wind variability on production. In this paper a methodology to produce seasonal predictions of capacity factor for a range of turbine classes is proposed for the first time. The strengths and weaknesses of the method are discussed and the forecast quality is evaluated for an application example over Europe.

Suggested Citation

  • Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:91-100
    DOI: 10.1016/j.renene.2019.04.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    2. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    3. Chris Hewitt & Simon Mason & David Walland, 2012. "The Global Framework for Climate Services," Nature Climate Change, Nature, vol. 2(12), pages 831-832, December.
    4. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    5. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    6. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    7. Matthias Themeßl & Andreas Gobiet & Georg Heinrich, 2012. "Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal," Climatic Change, Springer, vol. 112(2), pages 449-468, May.
    8. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    2. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Kunle Babaremu & Nmesoma Olumba & Ikenna Chris-Okoro & Konyegwachie Chuckwuma & Tien-Chien Jen & Oluseyi Oladijo & Esther Akinlabi, 2022. "Overview of Solar–Wind Hybrid Products: Prominent Challenges and Possible Solutions," Energies, MDPI, vol. 15(16), pages 1-25, August.
    4. Karthick Kanagarathinam & S. K. Aruna & S. Ravivarman & Mejdl Safran & Sultan Alfarhood & Waleed Alrajhi, 2023. "Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    5. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    6. Bastien Alonzo & Philippe Drobinski & Riwal Plougonven & Peter Tankov, 2020. "Measuring the Risk of Supply and Demand Imbalance at the Monthly to Seasonal Scale in France," Energies, MDPI, vol. 13(18), pages 1-21, September.
    7. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    8. Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
    9. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Hai Lin & Yi Yang & Shuguang Wang & Shuyu Wang & Jianping Tang & Guangtao Dong, 2023. "Evaluation of MSWX Bias-Corrected Meteorological Forcing Datasets in China," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    11. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    12. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    3. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    4. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    5. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    6. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    7. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    8. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    9. Duarte Jacondino, William & Nascimento, Ana Lucia da Silva & Calvetti, Leonardo & Fisch, Gilberto & Augustus Assis Beneti, Cesar & da Paz, Sheila Radman, 2021. "Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model," Energy, Elsevier, vol. 230(C).
    10. Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
    11. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    12. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    13. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    14. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Johann Baumgartner & Katharina Gruber & Sofia G. Simoes & Yves-Marie Saint-Drenan & Johannes Schmidt, 2020. "Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to Renewables.ninja," Energies, MDPI, vol. 13(9), pages 1-23, May.
    16. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    17. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    18. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    19. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    20. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:91-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.