IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v291y2021ics0306261921002725.html
   My bibliography  Save this article

Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination

Author

Listed:
  • Roggenburg, Michael
  • Warsinger, David M.
  • Bocanegra Evans, Humberto
  • Castillo, Luciano

Abstract

Access to sustainable clean water is a necessity for any successful civilization. The US-Mexico border has been experiencing a decline in the availability of this critical resource, stemming from mismanagement and heightened population which are exacerbated by climate change. If water is not adequately overseen, the region will be unable to support local societies and industry, effecting millions of inhabitants. A vision, articulated in Scientific American in 2019, outlined the potential for the development of a technology innovation park along the border which would provide sustainable water using renewable powered desalination. A version of this concept is demonstrated for the American side with configurations of coastal Seawater Reverse Osmosis desalination plants, sized to meet the public water demand of ~1000 MGal/day (~3.79 Mm3/day). The desalination and distribution of clean water is powered by offshore wind and onshore solar PV farms, which transfer energy over High Voltage Direct Current cables. One-hundred eight (108) renewable variations were simulated and demonstrated the ability to supply clean water at a levelized cost of 2.00–3.52 $/m3. When compared to 27 fossil fuel configurations, renewable powered variations avert adding the equivalent of 1.7–2,000,000 cars worth of CO2 pollution per year, avoid withdrawing the equivalent of 67–77,000 US households worth of water for power generation annually and add potentially over 100,000 more jobs. As water scarcity along the border becomes more prevalent, alternative sources of sustainable water will be crucial for bringing long term resource and economic stability to the region.

Suggested Citation

  • Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921002725
    DOI: 10.1016/j.apenergy.2021.116765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    3. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    4. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    5. Pierre Monnin, 2015. "The Impact of Interest Rates on Electricity Production Costs," Discussion Notes 1503, Council on Economic Policies.
    6. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    7. Qin, Chao & Innes-Wimsatt, Elijah & Loth, Eric, 2016. "Hydraulic-electric hybrid wind turbines: Tower mass saving and energy storage capacity," Renewable Energy, Elsevier, vol. 99(C), pages 69-79.
    8. Tao, Jing & Wang, Huaiyu & Liao, Haohan & Yu, Suiran, 2019. "Mechanical design and numerical simulation of digital-displacement radial piston pump for multi-megawatt wind turbine drivetrain," Renewable Energy, Elsevier, vol. 143(C), pages 995-1009.
    9. Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    10. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    11. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.
    12. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    14. Michael Whitaker & Garvin A. Heath & Patrick O’Donoughue & Martin Vorum, 2012. "Life Cycle Greenhouse Gas Emissions of Coal‐Fired Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 53-72, April.
    15. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    16. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    17. repec:reg:rpubli:46 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    2. Ma, Xiaolu & Zhao, Jin & Wang, Run & Li, Yuyao & Liu, Chuanyong & Liu, Yong, 2022. "Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination," Applied Energy, Elsevier, vol. 328(C).
    3. Xu, Jianwei & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Techno-economic-environmental analysis of direct-contact membrane distillation systems integrated with low-grade heat sources: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 349(C).
    4. Mahmoudi, Amin & Sadeghi, Mahsa & Deng, Xiaopeng & Mardani, Abbas, 2024. "A sustainable approach for exploiting cross-border nonrenewable resources using hybrid Game Theory and Ordinal Priority Approach," Resources Policy, Elsevier, vol. 88(C).
    5. María Magdalena Armendáriz-Ontiveros & Germán Eduardo Dévora-Isiordia & Jorge Rodríguez-López & Reyna Guadalupe Sánchez-Duarte & Jesús Álvarez-Sánchez & Yedidia Villegas-Peralta & María del Rosario Ma, 2022. "Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System," Energies, MDPI, vol. 15(20), pages 1-15, October.
    6. Juan Ríos-Arriola & Nicolás Velázquez & Jesús Armando Aguilar-Jiménez & Germán Eduardo Dévora-Isiordia & Cristian Ascención Cásares-de la Torre & José Armando Corona-Sánchez & Saúl Islas, 2022. "State of the Art of Desalination in Mexico," Energies, MDPI, vol. 15(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    2. Piotr Bórawski & Aneta Bełdycka-Bórawska & Bogdan Klepacki & Lisa Holden & Tomasz Rokicki & Andrzej Parzonko, 2024. "Changes in Gross Nuclear Electricity Production in the European Union," Energies, MDPI, vol. 17(14), pages 1-31, July.
    3. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    4. Gamarra, A.R. & Banacloche, S. & Lechon, Y. & del Río, P., 2023. "Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    6. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    7. Steffi Weyand & Carolin Wittich & Liselotte Schebek, 2019. "Environmental Performance of Emerging Photovoltaic Technologies: Assessment of the Status Quo and Future Prospects Based on a Meta-Analysis of Life-Cycle Assessment Studies," Energies, MDPI, vol. 12(22), pages 1-25, November.
    8. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    11. Timo Busch & Matthew Johnson & Thomas Pioch, 2022. "Corporate carbon performance data: Quo vadis?," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 350-363, February.
    12. Jiang, Junxia & Gao, Xiaoqing & Lv, Qingquan & Li, Zhenchao & Li, Peidu, 2021. "Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas," Renewable Energy, Elsevier, vol. 174(C), pages 157-169.
    13. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    14. Zhang, Jingpeng & Li, Zhengwen & Zhang, Zhihe & Feng, Kai & Yan, Binhang, 2021. "Can thermocatalytic transformations of captured CO2 reduce CO2 emissions?," Applied Energy, Elsevier, vol. 281(C).
    15. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    16. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    17. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    18. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    19. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    20. Roberts, M.B. & Bruce, A. & MacGill, I., 2019. "Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 95-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921002725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.