IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7363-d1271643.html
   My bibliography  Save this article

Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community

Author

Listed:
  • Robert Garner

    (College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK)

  • Zahir Dehouche

    (College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK)

Abstract

Installations of decentralised renewable energy systems (RES) are becoming increasing popular as governments introduce ambitious energy policies to curb emissions and slow surging energy costs. This work presents a novel model for optimal sizing for a decentralised renewable generation and hybrid storage system to create a renewable energy community (REC), developed in Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using real usage data from a rural island case study location. Cost remuneration was managed with an REC virtual trading layer, ensuring fair distribution among actors in accordance with the European RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system capacities such that the inherent trade-off relationship between project cost and decarbonisation can be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh, reducing costs by over 50% compared with typical EU grid power, with a project internal rate of return (IRR) of 10.8%, simple return of 9.6%/year, and return on investment (ROI) of 9 years. The emissions output from grid-only use was reduced by 72% to 69 gCO 2 e /kWh. Further research of lifetime economics and additional revenue streams in combination with this work could provide a useful tool for users to quickly design and prototype future decentralised REC systems.

Suggested Citation

  • Robert Garner & Zahir Dehouche, 2023. "Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community," Energies, MDPI, vol. 16(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7363-:d:1271643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Cuesta, M.A. & Castillo-Calzadilla, T. & Borges, C.E., 2020. "A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    3. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    5. Wang, Huaqing & Xie, Zhuoshi & Pu, Lei & Ren, Zhongrui & Zhang, Yaoyu & Tan, Zhongfu, 2022. "Energy management strategy of hybrid energy storage based on Pareto optimality," Applied Energy, Elsevier, vol. 327(C).
    6. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    7. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Binbin & Fan, Guangyao & Sun, Kai & Chen, Jing & Sun, Bo & Tian, Peigen, 2024. "Adaptive energy optimization strategy of island renewable power-to-hydrogen system with hybrid electrolyzers structure," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
    2. Keke Wang & Dongxiao Niu & Min Yu & Yi Liang & Xiaolong Yang & Jing Wu & Xiaomin Xu, 2021. "Analysis and Countermeasures of China’s Green Electric Power Development," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    3. Shoaib Ahmed & Amjad Ali & Alessandro Ciocia & Antonio D’Angola, 2024. "Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview," Energies, MDPI, vol. 17(13), pages 1-40, June.
    4. Danial Esfandiary Abdolmaleki & Shoeib Faraji Abdolmaleki & Pastora M. Bello Bugallo, 2023. "Evaluating Renewable Energy and Ranking 17 Autonomous Communities in Spain: A TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    5. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    6. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    7. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    8. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
    9. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    10. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    11. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    12. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    13. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    15. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    16. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-28, February.
    18. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    19. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    20. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7363-:d:1271643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.