IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p705-d137311.html
   My bibliography  Save this article

Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach

Author

Listed:
  • Qiaomu Zhu

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jinfu Chen

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Lin Zhu

    (Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA)

  • Xianzhong Duan

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yilu Liu

    (Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA)

Abstract

Wind speed prediction with spatio–temporal correlation is among the most challenging tasks in wind speed prediction. In this paper, the problem of predicting wind speed for multiple sites simultaneously is investigated by using spatio–temporal correlation. This paper proposes a model for wind speed prediction with spatio–temporal correlation, i.e., the predictive deep convolutional neural network (PDCNN). The model is a unified framework, integrating convolutional neural networks (CNNs) and a multi-layer perceptron (MLP). Firstly, the spatial features are extracted by CNNs located at the bottom of the model. Then, the temporal dependencies among these extracted spatial features are captured by the MLP. In this way, the spatial and temporal correlations are captured by PDCNN intrinsically. Finally, PDCNN generates the predicted wind speed by using the learnt spatio–temporal correlations. In addition, three error indices are defined to evaluate the prediction accuracy of the model on the wind turbine array. Experiment results on real-world data show that PDCNN can capture the spatio–temporal correlation effectively, and it outperforms the conventional machine learning models, including multi-layer perceptron, support vector regressor, decision tree, etc.

Suggested Citation

  • Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:705-:d:137311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    2. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    3. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis," Renewable Energy, Elsevier, vol. 33(6), pages 1237-1250.
    4. Kusiak, Andrew & Li, Wenyan, 2010. "Short-term prediction of wind power with a clustering approach," Renewable Energy, Elsevier, vol. 35(10), pages 2362-2369.
    5. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: A neural kriging application," Renewable Energy, Elsevier, vol. 33(6), pages 1251-1266.
    6. Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    2. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    3. Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
    4. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    5. Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
    6. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    7. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    8. Beccali, M. & Cirrincione, G. & Marvuglia, A. & Serporta, C., 2010. "Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor," Applied Energy, Elsevier, vol. 87(3), pages 884-893, March.
    9. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    10. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    11. Tar, Károly & Farkas, István & Rózsavölgyi, Kornél, 2011. "Climatic conditions for operation of wind turbines in Hungary," Renewable Energy, Elsevier, vol. 36(2), pages 510-518.
    12. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
    13. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    14. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    15. Petinrin, J.O. & Shaaban, Mohamed, 2015. "Renewable energy for continuous energy sustainability in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 967-981.
    16. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    17. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    18. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    19. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    20. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:705-:d:137311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.