IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp1048-1060.html
   My bibliography  Save this article

Impact of deep wind power penetration on variability at load centers

Author

Listed:
  • Waite, Michael
  • Modi, Vijay

Abstract

Increasingly, variable renewable energy capacity will be added distant from load centers in much of the world. How such intraregional heterogeneity in variable supply and load will impact the energy system in a deep renewable penetration scenario is studied here. Heterogeneous reliability requirements imposed by such scenarios are not well understood. Some unique geographic settings, such as the Nordic grid with weeks of pumped hydro backup, manage to circumvent this issue without significant curtailment, but most regions have yet to achieve the renewable energy levels at which the issue will arise. Using simulations of wind power expansion in New York State, we illustrate the intraregional effects by quantifying the net load, net load ramping, operating reserve and regulation requirements, and the associated distribution of infrastructure investments and ancillary services. The study finds that only at wind capacities exceeding 100% of the average statewide load does the wind-generated electricity meet significant portions of the distant demands. However, the peak net load in these areas is not reduced, requiring that dispatchable generation capacity be maintained. Moreover, the net load becomes highly variable, with large ramp rates that increase ancillary service requirements (operating reserves and frequency regulation) to ensure reliable system operation. A major finding is that the additional ancillary service requirements become more concentrated in the distant load centers. A second significant finding is that while transmission capacity upgrades greatly increase the wind-generated electricity that reaches load centers, the increased variability in that supply can exacerbate both the magnitude and heterogeneity of ancillary service requirements. These services would presumably be provided by the same local dispatchable resources that would now be operating at lower capacity factors but with higher variability. Such changes in the scale and distribution of intraregional integration measures and infrastructure investments may require new energy planning approaches and market structures to achieve anticipated future renewable energy targets.

Suggested Citation

  • Waite, Michael & Modi, Vijay, 2019. "Impact of deep wind power penetration on variability at load centers," Applied Energy, Elsevier, vol. 235(C), pages 1048-1060.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1048-1060
    DOI: 10.1016/j.apenergy.2018.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    2. Stern, Nicholas, 2015. "Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262029189, December.
    3. Shafiullah, G.M. & M.T. Oo, Amanullah & Shawkat Ali, A.B.M. & Wolfs, Peter, 2013. "Potential challenges of integrating large-scale wind energy into the power grid–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 306-321.
    4. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    5. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    6. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
    7. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    8. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    9. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    10. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    11. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    12. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.
    13. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    2. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    3. Conlon, Terence & Waite, Michael & Modi, Vijay, 2019. "Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid," Applied Energy, Elsevier, vol. 250(C), pages 1085-1098.
    4. Radpour, S. & Gemechu, E. & Ahiduzzaman, Md & Kumar, A., 2021. "Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector: The effects of carbon price and economic incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conlon, Terence & Waite, Michael & Modi, Vijay, 2019. "Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid," Applied Energy, Elsevier, vol. 250(C), pages 1085-1098.
    2. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
    3. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    4. Qiao, Qiao & Zeng, Xianhai & Lin, Boqiang, 2024. "Mitigating wind curtailment risk in China: The impact of subsidy reduction policy," Applied Energy, Elsevier, vol. 368(C).
    5. Lopez, Anthony & Mai, Trieu & Lantz, Eric & Harrison-Atlas, Dylan & Williams, Travis & Maclaurin, Galen, 2021. "Land use and turbine technology influences on wind potential in the United States," Energy, Elsevier, vol. 223(C).
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    8. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    9. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    10. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    11. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    12. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    15. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    16. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    17. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    18. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    19. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    20. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1048-1060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.