IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp528-541.html
   My bibliography  Save this article

Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods

Author

Listed:
  • Zhang, Jie
  • Draxl, Caroline
  • Hopson, Thomas
  • Monache, Luca Delle
  • Vanvyve, Emilie
  • Hodge, Bri-Mathias

Abstract

Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5°×0.67°) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applications (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10–15km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.

Suggested Citation

  • Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:528-541
    DOI: 10.1016/j.apenergy.2015.07.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2013. "A Multivariate and Multimodal Wind Distribution model," Renewable Energy, Elsevier, vol. 51(C), pages 436-447.
    2. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    3. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    4. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    5. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    6. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    7. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    8. Vanvyve, Emilie & Delle Monache, Luca & Monaghan, Andrew J. & Pinto, James O., 2015. "Wind resource estimates with an analog ensemble approach," Renewable Energy, Elsevier, vol. 74(C), pages 761-773.
    9. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    10. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    11. Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
    12. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    2. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    3. Yuan, Renyu & Ji, Wenju & Luo, Kun & Wang, Jianwen & Zhang, Sanxia & Wang, Qiang & Fan, Jianren & Ni, MingJiang & Cen, Kefa, 2017. "Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm," Applied Energy, Elsevier, vol. 206(C), pages 113-125.
    4. Zhang, Jie & Jain, Rishabh & Hodge, Bri-Mathias, 2016. "A data-driven method to characterize turbulence-caused uncertainty in wind power generation," Energy, Elsevier, vol. 112(C), pages 1139-1152.
    5. Tang, Xiao-Yu & Zhao, Shumian & Fan, Bo & Peinke, Joachim & Stoevesandt, Bernhard, 2019. "Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts," Applied Energy, Elsevier, vol. 238(C), pages 806-815.
    6. Gil Ruiz, Samuel Andrés & Cañón Barriga, Julio Eduardo & Martínez, J. Alejandro, 2022. "Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia," Energy, Elsevier, vol. 244(PB).
    7. Giannaros, Theodore M. & Melas, Dimitrios & Ziomas, Ioannis, 2017. "Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece," Renewable Energy, Elsevier, vol. 102(PA), pages 190-198.
    8. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
    9. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    10. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    11. Kuo, Jim Y.J. & Romero, David A. & Amon, Cristina H., 2015. "A mechanistic semi-empirical wake interaction model for wind farm layout optimization," Energy, Elsevier, vol. 93(P2), pages 2157-2165.
    12. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    13. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    14. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    15. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    16. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    17. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    18. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    19. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    20. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:528-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.