Reliability benefits of wide-area renewable energy planning across the Western United States
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.07.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
- Michael Milligan & Bethany Frew & Eduardo Ibanez & Juha Kiviluoma & Hannele Holttinen & Lennart Söder, 2017. "Capacity value assessments of wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(1), January.
- Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
- Mileva, Ana & Johnston, Josiah & Nelson, James H. & Kammen, Daniel M., 2016. "Power system balancing for deep decarbonization of the electricity sector," Applied Energy, Elsevier, vol. 162(C), pages 1001-1009.
- Katsigiannis, Yiannis A. & Stavrakakis, George S., 2014. "Estimation of wind energy production in various sites in Australia for different wind turbine classes: A comparative technical and economic assessment," Renewable Energy, Elsevier, vol. 67(C), pages 230-236.
- Chen, Tao & Pipattanasomporn, Manisa & Rahman, Imran & Jing, Zejia & Rahman, Saifur, 2020. "MATPLAN: A probability-based planning tool for cost-effective grid integration of renewable energy," Renewable Energy, Elsevier, vol. 156(C), pages 1089-1099.
- Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
- Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
- Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
- Murphy, Sinnott & Lavin, Luke & Apt, Jay, 2020. "Resource adequacy implications of temperature-dependent electric generator availability," Applied Energy, Elsevier, vol. 262(C).
- Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
- Nguyen, Christy & Ma, Chunbo & Hailu, Atakelty & Chalak, Morteza, 2016. "Factors influencing calculation of capacity value of wind power: A case study of the Australian National Electricity Market (NEM)," Renewable Energy, Elsevier, vol. 90(C), pages 319-328.
- Gualtieri, Giovanni & Secci, Sauro, 2012. "Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison," Renewable Energy, Elsevier, vol. 43(C), pages 183-200.
- Bañuelos-Ruedas, F. & Angeles-Camacho, C. & Rios-Marcuello, S., 2010. "Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2383-2391, October.
- Murphy, Sinnott & Sowell, Fallaw & Apt, Jay, 2019. "A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
- Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
- Kahn, Edward P., 2004. "Effective Load Carrying Capability of Wind Generation: Initial Results with Public Data," The Electricity Journal, Elsevier, vol. 17(10), pages 85-95, December.
- Fattori, Fabrizio & Anglani, Norma & Staffell, Iain & Pfenninger, Stefan, 2017. "High solar photovoltaic penetration in the absence of substantial wind capacity: Storage requirements and effects on capacity adequacy," Energy, Elsevier, vol. 137(C), pages 193-208.
- Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Siming & Liu, Pei & Li, Zheng, 2022. "Low carbon transition of China's electric and heating sector considering reliability: A modelling and optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Pham, An T. & Lovdal, Larson & Zhang, Tianyi & Craig, Michael T., 2022. "A techno-economic analysis of distributed energy resources versus wholesale electricity purchases for fueling decarbonized heavy duty vehicles," Applied Energy, Elsevier, vol. 322(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Murphy, Sinnott & Lavin, Luke & Apt, Jay, 2020. "Resource adequacy implications of temperature-dependent electric generator availability," Applied Energy, Elsevier, vol. 262(C).
- Cole, Wesley & Greer, Daniel & Ho, Jonathan & Margolis, Robert, 2020. "Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage," Applied Energy, Elsevier, vol. 279(C).
- de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
- Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
- Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
- Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
- Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
- Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
- Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
- Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
- Chyong, Chi Kong & Newbery, David, 2022.
"A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage,"
Energy Policy, Elsevier, vol. 170(C).
- Chyong, C-K. & Newbery, D. & McCarty, T., 2019. "A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage," Cambridge Working Papers in Economics 1968, Faculty of Economics, University of Cambridge.
- Chi Kong Chyong & David Newbery & Thomas McCarty, 2019. "A Unit Commitment and Economic Dispatch Model of the GB Electricity Market – Formulation and Application to Hydro Pumped Storage," Working Papers EPRG1924, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
- Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
- Frazier, A. Will & Cole, Wesley & Denholm, Paul & Greer, Daniel & Gagnon, Pieter, 2020. "Assessing the potential of battery storage as a peaking capacity resource in the United States," Applied Energy, Elsevier, vol. 275(C).
- Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
- Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
- Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
- Mills, Andrew D. & Rodriguez, Pía, 2020. "A simple and fast algorithm for estimating the capacity credit of solar and storage," Energy, Elsevier, vol. 210(C).
- Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
More about this item
Keywords
Effective load carrying capability; Wind and solar reliability; Capacity values; Capacity credits; WECC; Temperature-dependent forced outage rates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1487-1499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.