IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022289.html
   My bibliography  Save this article

Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind

Author

Listed:
  • Sward, J.A.
  • Ault, T.R.
  • Zhang, K.M.

Abstract

Numerical weather predictions (NWPs) have become essential in offshore wind energy planning and operations. Thus, rigorous assessments of NWP model performance are critical to integrating offshore wind power into existing power systems. Taking advantage of two LiDAR buoys launched off the coast of New York in 2019, we assess the performance of a multiphysics Weather Research and Forecast (WRF) model ensemble with a 1.33-km spatial resolution for estimating the power system impacts associated with New York’s offshore wind target. Our work is the first to report WRF horizontal wind speed biases not only at multiple heights above sea level but also at two locations while still considering all seasons. WRF tends to overpredict wind speeds during spring and summer and underpredict wind speeds during winter. However, the patterns in wind speed biases differ substantially between the two buoys offering compelling evidence against spatially uniform biases, which impacts the performance of numerous bias correction methods frequently used to post-process WRF data. Therefore, additional measurements of wind speeds throughout the lower atmosphere are necessary to fully characterize bias patterns. With the recent goal set by the U.S. to install 30 GW of offshore wind by 2030 — largely along the East Coast, mispredictions carry important policy implications. Absent accurate offshore wind uncertainty forecasts, power system operators throughout the Eastern Interconnection will be forced to dispatch their most expensive and likely high emitting power plants to compensate for periods of underperformance.

Suggested Citation

  • Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022289
    DOI: 10.1016/j.energy.2022.125346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    2. Liu, Yichao & Chen, Daoyi & Li, Sunwei & Chan, P.W., 2018. "Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling," Energy, Elsevier, vol. 160(C), pages 582-596.
    3. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    4. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
    5. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    6. Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
    7. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    8. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
    9. Brandon Storm & Sukanta Basu, 2010. "The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains," Energies, MDPI, vol. 3(2), pages 1-19, February.
    10. Archer, C.L. & Simão, H.P. & Kempton, W. & Powell, W.B. & Dvorak, M.J., 2017. "The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error," Renewable Energy, Elsevier, vol. 103(C), pages 346-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lins, Davi Ribeiro & Guedes, Kevin Santos & Pitombeira-Neto, Anselmo Ramalho & Rocha, Paulo Alexandre Costa & de Andrade, Carla Freitas, 2023. "Comparison of the performance of different wind speed distribution models applied to onshore and offshore wind speed data in the Northeast Brazil," Energy, Elsevier, vol. 278(PA).
    2. Cui, Xiwen & Yu, Xiaoyu & Niu, Dongxiao, 2024. "The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm a," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    2. Tuchtenhagen, Patrícia & Carvalho, Gilvani Gomes de & Martins, Guilherme & Silva, Pollyanne Evangelista da & Oliveira, Cristiano Prestrelo de & de Melo Barbosa Andrade, Lara & Araújo, João Medeiros de, 2020. "WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil," Energy, Elsevier, vol. 190(C).
    3. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    4. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
    5. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    6. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    8. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    9. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    12. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
    13. Liu, Yichao & Chen, Daoyi & Li, Sunwei & Chan, P.W., 2018. "Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling," Energy, Elsevier, vol. 160(C), pages 582-596.
    14. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    15. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "A refined wind farm parameterization for the weather research and forecasting model," Applied Energy, Elsevier, vol. 306(PB).
    16. Wang, Yi-Hui & Walter, Ryan K. & White, Crow & Farr, Hayley & Ruttenberg, Benjamin I., 2019. "Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast," Renewable Energy, Elsevier, vol. 133(C), pages 343-353.
    17. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    18. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    19. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
    20. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.