IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v121y2014icp20-27.html
   My bibliography  Save this item

A new neural network model for the state-of-charge estimation in the battery degradation process

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
  2. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
  3. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
  4. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
  5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
  6. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
  7. Lin, Cheng & Tang, Aihua & Xing, Jilei, 2017. "Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 394-404.
  8. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
  9. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
  10. Bing Jiang & Zeqi Chen & Feifan Chen, 2019. "Influence of Sampling Delay on the Estimation of Lithium-Ion Battery Parameters and an Optimized Estimation Method," Energies, MDPI, vol. 12(10), pages 1-16, May.
  11. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
  12. Feng, Xiong & Chen, Junxiong & Zhang, Zhongwei & Miao, Shuwen & Zhu, Qiao, 2021. "State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network," Energy, Elsevier, vol. 236(C).
  13. Mengying Chen & Fengling Han & Long Shi & Yong Feng & Chen Xue & Weijie Gao & Jinzheng Xu, 2022. "Sliding Mode Observer for State-of-Charge Estimation Using Hysteresis-Based Li-Ion Battery Model," Energies, MDPI, vol. 15(7), pages 1-14, April.
  14. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
  15. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
  16. Xintian Liu & Xuhui Deng & Yao He & Xinxin Zheng & Guojian Zeng, 2019. "A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 13(1), pages 1-16, December.
  17. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
  18. Carlos Antônio Rufino Júnior & Eleonora Riva Sanseverino & Pierluigi Gallo & Murilo Machado Amaral & Daniel Koch & Yash Kotak & Sergej Diel & Gero Walter & Hans-Georg Schweiger & Hudson Zanin, 2024. "Unraveling the Degradation Mechanisms of Lithium-Ion Batteries," Energies, MDPI, vol. 17(14), pages 1-52, July.
  19. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
  20. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
  21. Huan Yang & Yubing Qiu & Xingpeng Guo, 2015. "Prediction of State-of-Health for Nickel-Metal Hydride Batteries by a Curve Model Based on Charge-Discharge Tests," Energies, MDPI, vol. 8(11), pages 1-14, November.
  22. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
  23. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
  24. Shichun Yang & Cheng Deng & Yulong Zhang & Yongling He, 2017. "State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model," Energies, MDPI, vol. 10(10), pages 1-14, October.
  25. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
  26. Ni, Zichuan & Xiu, Xianchao & Yang, Ying, 2022. "Towards efficient state of charge estimation of lithium-ion batteries using canonical correlation analysis," Energy, Elsevier, vol. 254(PC).
  27. Bachir Zine & Haithem Bia & Amel Benmouna & Mohamed Becherif & Mehroze Iqbal, 2022. "Experimentally Validated Coulomb Counting Method for Battery State-of-Charge Estimation under Variable Current Profiles," Energies, MDPI, vol. 15(21), pages 1-15, November.
  28. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
  29. Wu, Zhou & Ling, Rui & Tang, Ruoli, 2017. "Dynamic battery equalization with energy and time efficiency for electric vehicles," Energy, Elsevier, vol. 141(C), pages 937-948.
  30. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
  31. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
  32. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
  33. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
  34. Xiao, Renxin & Hu, Yanwen & Jia, Xianguang & Chen, Guisheng, 2022. "A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment," Energy, Elsevier, vol. 243(C).
  35. Ngoc-Tham Tran & Abdul Basit Khan & Woojin Choi, 2017. "State of Charge and State of Health Estimation of AGM VRLA Batteries by Employing a Dual Extended Kalman Filter and an ARX Model for Online Parameter Estimation," Energies, MDPI, vol. 10(1), pages 1-18, January.
  36. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
  37. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
  38. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
  39. Xin Lu & Hui Li & Jun Xu & Siyuan Chen & Ning Chen, 2018. "Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model," Energies, MDPI, vol. 11(4), pages 1-18, March.
  40. Cai, Y. & Ouyang, M.G. & Yang, F., 2017. "Impact of power split configurations on fuel consumption and battery degradation in plug-in hybrid electric city buses," Applied Energy, Elsevier, vol. 188(C), pages 257-269.
  41. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
  42. Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
  43. Quan Ouyang & Rui Ma & Zhaoxiang Wu & Guotuan Xu & Zhisheng Wang, 2020. "Adaptive Square-Root Unscented Kalman Filter-Based State-of-Charge Estimation for Lithium-Ion Batteries with Model Parameter Online Identification," Energies, MDPI, vol. 13(18), pages 1-14, September.
  44. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
  45. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
  46. Zengkai Wang & Shengkui Zeng & Jianbin Guo & Taichun Qin, 2018. "Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-22, July.
  47. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
  48. Jian Ouyang & Hao Lin & Ye Hong, 2024. "Whale Optimization Algorithm BP Neural Network with Chaotic Mapping Improving for SOC Estimation of LMFP Battery," Energies, MDPI, vol. 17(17), pages 1-22, August.
  49. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
  50. Zheng, Linfeng & Zhang, Lei & Zhu, Jianguo & Wang, Guoxiu & Jiang, Jiuchun, 2016. "Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model," Applied Energy, Elsevier, vol. 180(C), pages 424-434.
  51. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
  52. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
  53. Xi, Zhimin & Wang, Rui & Fu, Yuhong & Mi, Chris, 2022. "Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons," Applied Energy, Elsevier, vol. 305(C).
  54. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
  55. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
  56. Mattia Stighezza & Valentina Bianchi & Ilaria De Munari, 2021. "FPGA Implementation of an Ant Colony Optimization Based SVM Algorithm for State of Charge Estimation in Li-Ion Batteries," Energies, MDPI, vol. 14(21), pages 1-12, October.
  57. Daehyun Kim & Taedong Goh & Minjun Park & Sang Woo Kim, 2015. "Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation of the State-of-Charge of a Lithium-Ion Battery," Energies, MDPI, vol. 8(11), pages 1-20, November.
  58. von Grabe, Jörn, 2016. "Potential of artificial neural networks to predict thermal sensation votes," Applied Energy, Elsevier, vol. 161(C), pages 412-424.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.