IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3372-d1431913.html
   My bibliography  Save this article

Unraveling the Degradation Mechanisms of Lithium-Ion Batteries

Author

Listed:
  • Carlos Antônio Rufino Júnior

    (School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
    Interinstitutional Graduate Program in Bioenergy (USP/UNICAMP/UNESP), 330 Cora Coralina Street, Cidade Universitária, Campinas 13083-896, Brazil
    CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Eleonora Riva Sanseverino

    (Engineering Department, University of Palermo (UNIPA), 90128 Palermo, Italy)

  • Pierluigi Gallo

    (Engineering Department, University of Palermo (UNIPA), 90128 Palermo, Italy
    Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), 43124 Parma, Italy)

  • Murilo Machado Amaral

    (School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil)

  • Daniel Koch

    (CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Yash Kotak

    (CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Sergej Diel

    (CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Gero Walter

    (CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Hans-Georg Schweiger

    (CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Hudson Zanin

    (Interinstitutional Graduate Program in Bioenergy (USP/UNICAMP/UNESP), 330 Cora Coralina Street, Cidade Universitária, Campinas 13083-896, Brazil)

Abstract

Lithium-Ion Batteries (LIBs) usually present several degradation processes, which include their complex Solid-Electrolyte Interphase (SEI) formation process, which can result in mechanical, thermal, and chemical failures. The SEI layer is a protective layer that forms on the anode surface. The SEI layer allows the movement of lithium ions while blocking electrons, which is necessary to prevent short circuits in the battery and ensure safe operation. However, the SEI formation mechanisms reduce battery capacity and power as they consume electrolyte species, resulting in irreversible material loss. Furthermore, it is important to understand the degradation reactions of the LIBs used in Electric Vehicles (EVs), aiming to establish the battery lifespan, predict and minimise material losses, and establish an adequate time for replacement. Moreover, LIBs applied in EVs suffer from two main categories of degradation, which are, specifically, calendar degradation and cycling degradation. There are several studies about battery degradation available in the literature, including different degradation phenomena, but the degradation mechanisms of large-format LIBs have rarely been investigated. Therefore, this review aims to present a systematic review of the existing literature about LIB degradation, providing insight into the complex parameters that affect battery degradation mechanisms. Furthermore, this review has investigated the influence of time, C-rate, depth of discharge, working voltage window, thermal and mechanical stresses, and side reactions in the degradation of LIBs.

Suggested Citation

  • Carlos Antônio Rufino Júnior & Eleonora Riva Sanseverino & Pierluigi Gallo & Murilo Machado Amaral & Daniel Koch & Yash Kotak & Sergej Diel & Gero Walter & Hans-Georg Schweiger & Hudson Zanin, 2024. "Unraveling the Degradation Mechanisms of Lithium-Ion Batteries," Energies, MDPI, vol. 17(14), pages 1-52, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3372-:d:1431913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    6. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    7. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    8. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    9. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    10. Antônio Rufino Júnior, Carlos & Sanseverino, Eleonora Riva & Gallo, Pierluigi & Koch, Daniel & Schweiger, Hans-Georg & Zanin, Hudson, 2022. "Blockchain review for battery supply chain monitoring and battery trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    12. Gao, Tianfeng & Bai, Jinlong & Ouyang, Dongxu & Wang, Zhirong & Bai, Wei & Mao, Ning & Zhu, Yu, 2023. "Effect of aging temperature on thermal stability of lithium-ion batteries: Part A – High-temperature aging," Renewable Energy, Elsevier, vol. 203(C), pages 592-600.
    13. Hongxin Yu & Yaohui Jiang & Zhaowen Zhang & Wen-Long Shang & Chunjia Han & Yuanjun Zhao, 2022. "The impact of carbon emission trading policy on firms’ green innovation in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    14. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    15. Tang, Rui & Dore, Jonathon & Ma, Jin & Leong, Philip H.W., 2021. "Interpolating high granularity solar generation and load consumption data using super resolution generative adversarial network," Applied Energy, Elsevier, vol. 299(C).
    16. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Xiaojia & Sun, Bingxiang & Wang, Jiaju & Zhang, Weige & Ma, Shichang & He, Xitian & Ruan, Haijun, 2022. "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Applied Energy, Elsevier, vol. 322(C).
    2. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    3. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    4. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    5. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    7. Shaozhen Huang & Zhibin Wu & Bernt Johannessen & Kecheng Long & Piao Qing & Pan He & Xiaobo Ji & Weifeng Wei & Yuejiao Chen & Libao Chen, 2023. "Interfacial friction enabling ≤ 20 μm thin free-standing lithium strips for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
    9. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    10. Han Long & Gen‐Fu Feng & Qiang Gong & Chun‐Ping Chang, 2023. "ESG performance and green innovation: An investigation based on quantile regression," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 5102-5118, November.
    11. Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
    12. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).
    13. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    14. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    15. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    17. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    20. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3372-:d:1431913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.