IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp394-404.html
   My bibliography  Save this article

Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles

Author

Listed:
  • Lin, Cheng
  • Tang, Aihua
  • Xing, Jilei

Abstract

Real-time and accurate state-of-charge (SoC) estimation of lithium-ion batteries is a critical issue for efficient monitoring, control and utilization of advanced battery management systems (BMS) in electric vehicles (EVs). The electrochemical mechanism model can accurately describe the spatially distributed behavior of the internal states of the battery, but the model is complex and computationally huge, which is difficult to simulation in vehicle BMS. To solve these problems, it is necessary to simplify the battery mechanism model and study the model-based SoC estimation approaches. In this paper, two order-reduced models including an average-electrode model (AEM) and a single particle model (SPM) are first proposed. Additionally, the reduced-models combined with algorithms, including an extended Kalman filter (EKF), a sliding-mode observer (SMO) with a uniform reaching law (URL) and an SMO with an exponential reaching law (ERL), are employed to design battery SoC observers. To achieve an optimal trade-off between the tracking accuracy and convergence ability, the performances of these approaches are compared under an Urban Dynamometer Driving Schedule (UDDS) test. The comparison results indicate that the SPM-EKF approach can obtain a reliable battery voltage response and a more accurate SoC estimation than other approaches.

Suggested Citation

  • Lin, Cheng & Tang, Aihua & Xing, Jilei, 2017. "Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 394-404.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:394-404
    DOI: 10.1016/j.apenergy.2017.05.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730613X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chun & He, Hongwen & Zhang, Yongzhi & Mu, Hao, 2017. "A comparative study on the applicability of ultracapacitor models for electric vehicles under different temperatures," Applied Energy, Elsevier, vol. 196(C), pages 268-278.
    2. Wang, Chun & Xiong, Rui & He, Hongwen & Ding, Xiaofeng & Shen, Weixiang, 2016. "Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 612-622.
    3. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    4. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    5. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    6. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    7. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    8. Hongwen He & Hongzhou Qin & Xiaokun Sun & Yuanpeng Shui, 2013. "Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms," Energies, MDPI, vol. 6(10), pages 1-13, September.
    9. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jiahang & Yang, Rufan & Hui, Shu-Yuen Ron & Nguyen, Hung D., 2024. "Dual Digital Twin: Cloud–edge collaboration with Lyapunov-based incremental learning in EV batteries," Applied Energy, Elsevier, vol. 355(C).
    2. Huang, Haichi & Bian, Chong & Wu, Mengdan & An, Dong & Yang, Shunkun, 2024. "A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    3. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    5. Guo, Shanshan & Ma, Liang, 2023. "A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation," Energy, Elsevier, vol. 263(PC).
    6. Longxing Wu & Kai Liu & Hui Pang & Jiamin Jin, 2021. "Online SOC Estimation Based on Simplified Electrochemical Model for Lithium-Ion Batteries Considering Current Bias," Energies, MDPI, vol. 14(17), pages 1-12, August.
    7. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).
    8. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    9. Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    2. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.
    3. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    4. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    5. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    6. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    7. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    8. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    9. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    10. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    11. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    12. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    13. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    14. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    15. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    16. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    17. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    18. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    20. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:394-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.