IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2950-2976d48291.html
   My bibliography  Save this article

Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures

Author

Listed:
  • Fei Feng

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Rengui Lu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Guo Wei

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Chunbo Zhu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

This study describes an online estimation of the model parameters and state of charge (SOC) of lithium iron phosphate batteries in electric vehicles. A widely used SOC estimator is based on the dynamic battery model with predeterminate parameters. However, model parameter variances that follow with their varied operation temperatures can result in errors in estimating battery SOC. To address this problem, a battery online parameter estimator is presented based on an equivalent circuit model using an adaptive joint extended Kalman filter algorithm. Simulations based on actual data are established to verify accuracy and stability in the regression of model parameters. Experiments are also performed to prove that the proposed estimator exhibits good reliability and adaptability under different loading profiles with various temperatures. In addition, open-circuit voltage (OCV) is used to estimate SOC in the proposed algorithm. However, the OCV based on the proposed online identification includes a part of concentration polarization and hysteresis, which is defined as parametric identification-based OCV (OCV PI ). Considering the temperature factor, a novel OCV–SOC relationship map is established by using OCV PI under various temperatures. Finally, a validating experiment is conducted based on the consecutive loading profiles. Results indicate that our method is effective and adaptable when a battery operates at different ambient temperatures.

Suggested Citation

  • Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2950-2976:d:48291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yao & Liu, XingTao & Zhang, ChenBin & Chen, ZongHai, 2013. "A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries," Applied Energy, Elsevier, vol. 101(C), pages 808-814.
    2. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    3. Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
    4. Fei Feng & Rengui Lu & Chunbo Zhu, 2014. "A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range," Energies, MDPI, vol. 7(5), pages 1-29, May.
    5. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    6. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    7. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    8. Pei, Lei & Zhu, Chunbo & Wang, Tiansi & Lu, Rengui & Chan, C.C., 2014. "Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 66(C), pages 766-778.
    9. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    10. He, Hongwen & Zhang, Xiaowei & Xiong, Rui & Xu, Yongli & Guo, Hongqiang, 2012. "Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 39(1), pages 310-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    2. Xintian Liu & Xuhui Deng & Yao He & Xinxin Zheng & Guojian Zeng, 2019. "A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 13(1), pages 1-16, December.
    3. Duong, Van-Huan & Bastawrous, Hany Ayad & See, Khay Wai, 2017. "Accurate approach to the temperature effect on state of charge estimation in the LiFePO4 battery under dynamic load operation," Applied Energy, Elsevier, vol. 204(C), pages 560-571.
    4. Jianping Gao & Yongzhi Zhang & Hongwen He, 2015. "A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    5. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
    6. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Feng, Fei & Yang, Rui & Meng, Jinhao & Xie, Yi & Zhang, Zhiguo & Chai, Yi & Mou, Lisha, 2022. "Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part. 2. Modeling and prediction," Energy, Elsevier, vol. 243(C).
    8. Zhongwei Deng & Lin Yang & Yishan Cai & Hao Deng, 2016. "Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries," Energies, MDPI, vol. 9(6), pages 1-16, June.
    9. Shichun Yang & Cheng Deng & Yulong Zhang & Yongling He, 2017. "State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model," Energies, MDPI, vol. 10(10), pages 1-14, October.
    10. Jiang, Yan & Meng, Xin, 2023. "A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data," Energy, Elsevier, vol. 284(C).
    11. Hui Pang & Fengqi Zhang, 2018. "Experimental Data-Driven Parameter Identification and State of Charge Estimation for a Li-Ion Battery Equivalent Circuit Model," Energies, MDPI, vol. 11(5), pages 1-14, April.
    12. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    13. Feng, Fei & Yang, Rui & Meng, Jinhao & Xie, Yi & Zhang, Zhiguo & Chai, Yi & Mou, Lisha, 2022. "Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part 1. experiment investigation and regression analysis," Energy, Elsevier, vol. 242(C).
    14. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    15. Shulin Liu & Naxin Cui & Chenghui Zhang, 2017. "An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-14, September.
    16. Haobin Jiang & Xijia Chen & Yifu Liu & Qian Zhao & Huanhuan Li & Biao Chen, 2021. "Online State-of-Charge Estimation Based on the Gas–Liquid Dynamics Model for Li(NiMnCo)O 2 Battery," Energies, MDPI, vol. 14(2), pages 1-19, January.
    17. Zheng, Linfeng & Zhang, Lei & Zhu, Jianguo & Wang, Guoxiu & Jiang, Jiuchun, 2016. "Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model," Applied Energy, Elsevier, vol. 180(C), pages 424-434.
    18. Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    19. Anna I. Pózna & Katalin M. Hangos & Attila Magyar, 2019. "Temperature Dependent Parameter Estimation of Electrical Vehicle Batteries," Energies, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    2. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    3. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    4. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    5. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    6. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    8. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    9. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    10. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    11. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    12. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    13. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    14. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    15. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Haobin Jiang & Xijia Chen & Yifu Liu & Qian Zhao & Huanhuan Li & Biao Chen, 2021. "Online State-of-Charge Estimation Based on the Gas–Liquid Dynamics Model for Li(NiMnCo)O 2 Battery," Energies, MDPI, vol. 14(2), pages 1-19, January.
    17. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    18. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    19. Kang, Jianqiang & Yan, Fuwu & Zhang, Pei & Du, Changqing, 2014. "Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency," Energy, Elsevier, vol. 70(C), pages 618-625.
    20. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2950-2976:d:48291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.