IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4300-d1465798.html
   My bibliography  Save this article

Whale Optimization Algorithm BP Neural Network with Chaotic Mapping Improving for SOC Estimation of LMFP Battery

Author

Listed:
  • Jian Ouyang

    (Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

  • Hao Lin

    (School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

  • Ye Hong

    (Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou 510665, China)

Abstract

The state of charge (SOC) is a core parameter in the battery management system for LMFP batteries. Accurate SOC estimation is crucial for ensuring the safety and reliability of energy storage applications and new energy vehicles. In order to achieve better SOC estimation accuracy, this article proposes an adaptive whale optimization algorithm (WOA) with chaotic mapping to improve the BP neural network (BPNN) model. The SOC estimation accuracy of the BPNN model was improved by utilizing WOA to find the optimal target weight values and thresholds. Comparative simulation experiments (including constant current and working condition discharge experiments) were conducted in Matlab/Simulink R2018a to verify the proposed algorithm and the other four algorithms. The experimental results show that the proposed algorithm had higher SOC estimation accuracy than the other four algorithms, and its prediction errors were less than 1%. This indicates that the proposed SOC estimation method has better prediction accuracy and stability, and has certain theoretical research significance.

Suggested Citation

  • Jian Ouyang & Hao Lin & Ye Hong, 2024. "Whale Optimization Algorithm BP Neural Network with Chaotic Mapping Improving for SOC Estimation of LMFP Battery," Energies, MDPI, vol. 17(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4300-:d:1465798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    2. Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
    3. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Zakaria, Nor Farizan & Saari, Mohd Mawardi, 2023. "Using the evolutionary mating algorithm for optimizing deep learning parameters for battery state of charge estimation of electric vehicle," Energy, Elsevier, vol. 279(C).
    4. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    5. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    6. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    2. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    5. Xin Lu & Hui Li & Jun Xu & Siyuan Chen & Ning Chen, 2018. "Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model," Energies, MDPI, vol. 11(4), pages 1-18, March.
    6. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    7. Lin, Cheng & Tang, Aihua & Xing, Jilei, 2017. "Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 394-404.
    8. Constantina Kopitsa & Ioannis G. Tsoulos & Vasileios Charilogis & Athanassios Stavrakoudis, 2024. "Predicting the Duration of Forest Fires Using Machine Learning Methods," Future Internet, MDPI, vol. 16(11), pages 1-19, October.
    9. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    10. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    11. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    12. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    13. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    14. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    15. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    16. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    17. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
    19. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    20. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4300-:d:1465798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.