IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1054-d500985.html
   My bibliography  Save this article

Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter

Author

Listed:
  • Kuo Yang

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Yugui Tang

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Zhen Zhang

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

Abstract

With the development of new energy vehicle technology, battery management systems used to monitor the state of the battery have been widely researched. The accuracy of the battery status assessment to a great extent depends on the accuracy of the battery model parameters. This paper proposes an improved method for parameter identification and state-of-charge (SOC) estimation for lithium-ion batteries. Using a two-order equivalent circuit model, the battery model is divided into two parts based on fast dynamics and slow dynamics. The recursive least squares method is used to identify parameters of the battery, and then the SOC and the open-circuit voltage of the model is estimated with the extended Kalman filter. The two-module voltages are calculated using estimated open circuit voltage and initial parameters, and model parameters are constantly updated during iteration. The proposed method can be used to estimate the parameters and the SOC in real time, which does not need to know the state of SOC and the value of open circuit voltage in advance. The method is tested using data from dynamic stress tests, the root means squared error of the accuracy of the prediction model is about 0.01 V, and the average SOC estimation error is 0.0139. Results indicate that the method has higher accuracy in offline parameter identification and online state estimation than traditional recursive least squares methods.

Suggested Citation

  • Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1054-:d:500985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    4. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    5. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    6. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    7. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
    8. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    9. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    10. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    11. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    12. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Shi & Yanyu Wang & Haoran Zheng, 2022. "Wind Speed Prediction for Offshore Sites Using a Clockwork Recurrent Network," Energies, MDPI, vol. 15(3), pages 1-18, January.
    2. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    3. Xinghao Zhang & Yan Huang & Zhaowei Zhang & Huipin Lin & Yu Zeng & Mingyu Gao, 2022. "A Hybrid Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network Combined with Attention and a Kalman Filter," Energies, MDPI, vol. 15(18), pages 1-26, September.
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    5. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).
    6. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    7. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    8. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    9. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    2. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    6. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    8. Chuan-Xiang Yu & Yan-Min Xie & Zhao-Yu Sang & Shi-Ya Yang & Rui Huang, 2019. "State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation," Energies, MDPI, vol. 12(21), pages 1-19, October.
    9. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    10. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    11. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    12. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    13. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    16. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    17. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    18. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    19. Fan, Kesen & Wan, Yiming & Wang, Zhuo & Jiang, Kai, 2023. "Time-efficient identification of lithium-ion battery temperature-dependent OCV-SOC curve using multi-output Gaussian process," Energy, Elsevier, vol. 268(C).
    20. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1054-:d:500985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.