IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8172-d960799.html
   My bibliography  Save this article

Experimentally Validated Coulomb Counting Method for Battery State-of-Charge Estimation under Variable Current Profiles

Author

Listed:
  • Bachir Zine

    (Mechanical Engineering Department, Faculty of Technology, University of Eloued, El Oued 39000, Algeria)

  • Haithem Bia

    (Mechanical Engineering Department, Faculty of Technology, University of Eloued, El Oued 39000, Algeria)

  • Amel Benmouna

    (ESTA, School of Business and Engineering, 90000 Belfort, France
    Femto-ST, FCLAB, University Bourgogne Franche-Comte, CNRS, UTBM, 91110 Belfort, France)

  • Mohamed Becherif

    (Femto-ST, FCLAB, University Bourgogne Franche-Comte, CNRS, UTBM, 91110 Belfort, France)

  • Mehroze Iqbal

    (Femto-ST, FCLAB, University Bourgogne Franche-Comte, CNRS, UTBM, 91110 Belfort, France)

Abstract

Battery state of charge as an effective operational indicator is expected to play a crucial role in the advancement of electric vehicles, improving the battery capacity and energy utilization, avoiding battery overcharging and over-discharging, extending the battery’s useful lifespan, and extending the autonomy of electric vehicles. In context, this article presents a computationally efficient battery state-of-charge estimator based on the Coulomb counting technique with constant and variable discharging current profiles for an actual battery pack in real time. A dedicated experimental bench is developed for validation purposes, where pivotal measurements such as current, voltage, and temperature are initially measured during the charging/discharging cycle. The state of charge thus obtained via these measurements is then compared with the value estimated through the battery generic model. Detailed analysis with conclusive outcomes is finally presented to exhibit the flexible nature of the proposed method in terms of the precise state-of-charge estimation for a variety of batteries, ranging from lead–acid batteries for domestic applications to Li-ion batteries inside electric vehicles.

Suggested Citation

  • Bachir Zine & Haithem Bia & Amel Benmouna & Mohamed Becherif & Mehroze Iqbal, 2022. "Experimentally Validated Coulomb Counting Method for Battery State-of-Charge Estimation under Variable Current Profiles," Energies, MDPI, vol. 15(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8172-:d:960799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    2. Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
    3. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    4. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    5. Fei Feng & Rengui Lu & Chunbo Zhu, 2014. "A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range," Energies, MDPI, vol. 7(5), pages 1-29, May.
    6. Diego Salazar & Marcelo Garcia, 2022. "Estimation and Comparison of SOC in Batteries Used in Electromobility Using the Thevenin Model and Coulomb Ampere Counting," Energies, MDPI, vol. 15(19), pages 1-13, September.
    7. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    8. Alejandro Gismero & Erik Schaltz & Daniel-Ioan Stroe, 2020. "Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage," Energies, MDPI, vol. 13(7), pages 1-11, April.
    9. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi Rubino & Guido Rubino & Raffaele Esempio, 2023. "Linear Programming-Based Power Management for a Multi-Feeder Ultra-Fast DC Charging Station," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    2. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    3. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    5. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.
    6. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    7. Bizhong Xia & Rui Huang & Zizhou Lao & Ruifeng Zhang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Online Parameter Identification of Lithium-Ion Batteries Using a Novel Multiple Forgetting Factor Recursive Least Square Algorithm," Energies, MDPI, vol. 11(11), pages 1-19, November.
    8. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    9. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    10. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
    11. Wang, Ju & Xiong, Rui & Li, Linlin & Fang, Yu, 2018. "A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach," Applied Energy, Elsevier, vol. 229(C), pages 648-659.
    12. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    13. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    14. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    15. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
    16. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    17. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    18. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    19. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    20. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8172-:d:960799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.