IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015536.html
   My bibliography  Save this article

Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework

Author

Listed:
  • Feng, Zhanyu
  • Zhang, Jian
  • Jiang, Han
  • Yao, Xuejian
  • Qian, Yu
  • Zhang, Haiyan

Abstract

As the market share of electric vehicles (EVs) continues to grow, driving range capability has emerged as a primary concern for drivers, car manufacturers, and policymakers. Accurate real-time energy consumption prediction is essential in mitigating range anxiety and fostering the adoption of EVs. Consequently, an EV energy consumption prediction framework that comprehensively considers vehicle and environmental factors, with special attention to individual driving styles and driving conditions, constructed based on long short-term memory (LSTM) and Transformer models is proposed. This framework addresses the issue of long-term dependencies and captures characteristics of time-series data with increased efficiency. Upon rigorous evaluation, the model achieved the mean absolute percentage error (MAPE) of 4.63 % for state of charge (SOC) of EV's battery in experimental dataset, outperforming LSTM and multivariate regression (MLR). The ablation experiment shows that the MAPE of the model is reduced by 18.47 % and 15.27 % respectively after considering the individual driving style of drivers and the driving conditions of vehicles for both two types of vehicles. Based on this framework, a long-distance EV energy consumption prediction strategy based on short-distance is proposed, with a MAPE of 6.7 % when SOC value is reduced from 90 to 40 in the selected dataset.

Suggested Citation

  • Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015536
    DOI: 10.1016/j.energy.2024.131780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.