IDEAS home Printed from https://ideas.repec.org/f/pwi441.html
   My authors  Follow this author

Ines Wilms

Personal Details

First Name:Ines
Middle Name:
Last Name:Wilms
Suffix:
RePEc Short-ID:pwi441
[This author has chosen not to make the email address public]
https://www.maastrichtuniversity.nl/i.wilms

Affiliation

Vakgroep Kwantitatieve Economie
School of Business and Economics
Maastricht University

Maastricht, Netherlands
http://www.maastrichtuniversity.nl/web/Faculties/SBE/Theme/Departments/QuantitativeEconomics.htm
RePEc:edi:dqmaanl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
  2. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
  3. Enrico Wegner & Lenard Lieb & Stephan Smeekes & Ines Wilms, 2024. "Transmission Channel Analysis in Dynamic Models," Papers 2405.18987, arXiv.org, revised Jul 2024.
  4. Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
  5. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
  6. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
  7. Robert Adamek & Stephan Smeekes & Ines Wilms, 2023. "Sparse High-Dimensional Vector Autoregressive Bootstrap," Papers 2302.01233, arXiv.org.
  8. Luca Barbaglia & Christophe Croux & Ines Wilms, 2022. "Detecting Anti-dumping Circumvention: A Network Approach," Papers 2207.05394, arXiv.org.
  9. Robert Adamek & Stephan Smeekes & Ines Wilms, 2022. "Local Projection Inference in High Dimensions," Papers 2209.03218, arXiv.org, revised Apr 2024.
  10. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
  11. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
  12. Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
  13. Stephan Smeekes & Ines Wilms, 2020. "bootUR: An R Package for Bootstrap Unit Root Tests," Papers 2007.12249, arXiv.org, revised Jul 2022.
  14. Vanessa Berenguer Rico & Ines Wilms, 2018. "White heteroscedasticty testing after outlier removal," Economics Series Working Papers 853, University of Oxford, Department of Economics.
  15. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073, arXiv.org.
  16. Stéphanie Aerts & Ines Wilms, 2017. "Cellwise robust regularized discriminant analysis," Working Papers of Department of Decision Sciences and Information Management, Leuven 563648, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  17. Ines Wilms & Luca Barbaglia & Christophe Croux, 2016. "Multi-class vector autoregressive models for multi-store sales data," Working Papers of Department of Decision Sciences and Information Management, Leuven 540947, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  18. Luca Barbaglia & Ines Wilms & Christophe Croux, 2016. "Commodity Dynamics: A Sparse Multi-class Approach," Papers 1604.01224, arXiv.org, revised Oct 2016.
  19. Ines Wilms & Jeroen Rombouts & Christophe Croux, 2016. "Lasso-based forecast combinations for forecasting realized variances," Working Papers of Department of Decision Sciences and Information Management, Leuven 553087, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  20. Ines Wilms & Christophe Croux, 2015. "An algorithm for the multivariate group lasso with covariance estimation," Working Papers of Department of Decision Sciences and Information Management, Leuven 516983, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  21. Ines Wilms & Sarah Gelper & Christophe Croux, 2015. "The predictive power of the business and bank sentiment of firms: A high-dimensional Granger Causality approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 504661, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
  22. Ines Wilms & Christophe Croux, 2014. "Robust sparse canonical correlation analysis," Working Papers of Department of Decision Sciences and Information Management, Leuven 472948, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.

Articles

  1. Robert Adamek & Stephan Smeekes & Ines Wilms, 2024. "Local projection inference in high dimensions," The Econometrics Journal, Royal Economic Society, vol. 27(3), pages 323-342.
  2. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
  3. Ines Wilms & Sumanta Basu & Jacob Bien & David S. Matteson, 2023. "Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 571-582, January.
  4. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
  5. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
  6. Vanessa Berenguer-Rico & Ines Wilms, 2021. "Heteroscedasticity testing after outlier removal," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 51-85, January.
  7. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
  8. I. Wilms & C. Croux, 2018. "An algorithm for the multivariate group lasso with covariance estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(4), pages 668-681, March.
  9. Ines Wilms & Luca Barbaglia & Christophe Croux, 2018. "Multiclass vector auto‐regressive models for multistore sales data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 435-452, February.
  10. Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.
  11. Christophe Croux & Ines Wilms, 2016. "Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 353-356, June.
  12. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
  13. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.
  14. Wilms, Ines & Gelper, Sarah & Croux, Christophe, 2016. "The predictive power of the business and bank sentiment of firms: A high-dimensional Granger Causality approach," European Journal of Operational Research, Elsevier, vol. 254(1), pages 138-147.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.

    Cited by:

    1. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.

  2. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.

    Cited by:

    1. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    2. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.

  3. Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.

    Cited by:

    1. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    2. Efstathios Polyzos & Costas Siriopoulos, 2024. "Autoregressive Random Forests: Machine Learning and Lag Selection for Financial Research," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 225-262, July.
    3. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
    4. Eugene Dettaa & Endong Wang, 2024. "Inference in High-Dimensional Linear Projections: Multi-Horizon Granger Causality and Network Connectedness," Papers 2410.04330, arXiv.org.
    5. Robert Adamek & Stephan Smeekes & Ines Wilms, 2023. "Sparse High-Dimensional Vector Autoregressive Bootstrap," Papers 2302.01233, arXiv.org.
    6. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Inference in Non-stationary High-Dimensional VARs," Papers 2302.01434, arXiv.org, revised Sep 2023.
    7. Sander Barendse, 2023. "Expected Shortfall LASSO," Papers 2307.01033, arXiv.org, revised Jan 2024.
    8. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
    9. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.

  4. Vanessa Berenguer Rico & Ines Wilms, 2018. "White heteroscedasticty testing after outlier removal," Economics Series Working Papers 853, University of Oxford, Department of Economics.

    Cited by:

    1. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," Economics Papers 2019-W05, Economics Group, Nuffield College, University of Oxford.
    2. Takamitsu Kurita & B. Nielsen, 2018. "Partial cointegrated vector autoregressive models with structural breaks in deterministic terms," Economics Papers 2018-W03, Economics Group, Nuffield College, University of Oxford.

  5. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073, arXiv.org.

    Cited by:

    1. Tadahiro Nakajima & Yuki Toyoshima, 2020. "Examination of the Spillover Effects among Natural Gas and Wholesale Electricity Markets Using Their Futures with Different Maturities and Spot Prices," Energies, MDPI, vol. 13(7), pages 1-14, March.

  6. Ines Wilms & Luca Barbaglia & Christophe Croux, 2016. "Multi-class vector autoregressive models for multi-store sales data," Working Papers of Department of Decision Sciences and Information Management, Leuven 540947, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.

    Cited by:

    1. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

  7. Luca Barbaglia & Ines Wilms & Christophe Croux, 2016. "Commodity Dynamics: A Sparse Multi-class Approach," Papers 1604.01224, arXiv.org, revised Oct 2016.

    Cited by:

    1. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    2. Jiang, Yonghong & Jiang, Cheng & Nie, He & Mo, Bin, 2019. "The time-varying linkages between global oil market and China's commodity sectors: Evidence from DCC-GJR-GARCH analyses," Energy, Elsevier, vol. 166(C), pages 577-586.
    3. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    4. Asadi, Mehrad & Roudari, Soheil & Tiwari, Aviral Kumar & Roubaud, David, 2023. "Scrutinizing commodity markets by quantile spillovers: A case study of the Australian economy," Energy Economics, Elsevier, vol. 118(C).
    5. Hailan Pan & Xiaohuan Yang, 2021. "Fast clustering algorithm of commodity association big data sparse network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 667-674, August.
    6. Jiang, Yonghong & Fu, Yuyuan & Ruan, Weihua, 2019. "Risk spillovers and portfolio management between precious metal and BRICS stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).

  8. Ines Wilms & Christophe Croux, 2015. "An algorithm for the multivariate group lasso with covariance estimation," Working Papers of Department of Decision Sciences and Information Management, Leuven 516983, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.

    Cited by:

    1. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Zhang, Ruoyang & Ghosh, Malay, 2022. "Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.

  9. Ines Wilms & Sarah Gelper & Christophe Croux, 2015. "The predictive power of the business and bank sentiment of firms: A high-dimensional Granger Causality approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 504661, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.

    Cited by:

    1. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    2. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    3. Andrzej Cieślik & Mahdi Ghodsi, 2021. "Economic Sentiment Indicators and Foreign Direct Investment: Empirical Evidence from European Union Countries," wiiw Working Papers 203, The Vienna Institute for International Economic Studies, wiiw.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    5. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    6. He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.
    7. Zhu, Ke & Liu, Hanzhong, 2022. "Confidence intervals for parameters in high-dimensional sparse vector autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," IREA Working Papers 201801, University of Barcelona, Research Institute of Applied Economics, revised Jan 2018.
    9. Calvo-Pardo, Hector & Mancini, Tullio & Olmo, Jose, 2021. "Granger causality detection in high-dimensional systems using feedforward neural networks," International Journal of Forecasting, Elsevier, vol. 37(2), pages 920-940.
    10. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    11. Dimitriou Dimitrios & Pappas Anastasios & Kazanas Thanassis & Kenourgios Dimitris, 2021. "Do confidence indicators lead Greek economic activity?," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 1-15.

Articles

  1. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    See citations under working paper version above.
  2. Ines Wilms & Sumanta Basu & Jacob Bien & David S. Matteson, 2023. "Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 571-582, January.

    Cited by:

    1. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.

  3. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.

    Cited by:

    1. Fu, Saiji & Tian, Yingjie & Tang, Long, 2023. "Robust regression under the general framework of bounded loss functions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1325-1339.
    2. Mohd Shareduwan Mohd Kasihmuddin & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor & Habibah A. Wahab & Siti Maisharah Sheikh Ghadzi, 2022. "Supervised Learning Perspective in Logic Mining," Mathematics, MDPI, vol. 10(6), pages 1-35, March.
    3. Hossein Tarighi & Zeynab Nourbakhsh Hosseiny & Maryam Akbari & Elaheh Mohammadhosseini, 2023. "The Moderating Effect of the COVID-19 Pandemic on the Relation between Corporate Governance and Firm Performance," JRFM, MDPI, vol. 16(7), pages 1-43, June.
    4. Huang, Ling-Wei & Shao, Yuan-Hai & Lv, Xiao-Jing & Li, Chun-Na, 2024. "Large-scale robust regression with truncated loss via majorization-minimization algorithm," European Journal of Operational Research, Elsevier, vol. 319(2), pages 494-504.
    5. Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
    6. Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).

  4. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.

    Cited by:

    1. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Zhang, Lixia & Luo, Qin & Guo, Xiaozhu & Umar, Muhammad, 2022. "Medium-term and long-term volatility forecasts for EUA futures with country-specific economic policy uncertainty indices," Resources Policy, Elsevier, vol. 77(C).
    3. Pradip Debnath & Hari Mohan Srivastava, 2021. "Optimizing Stock Market Returns during Global Pandemic Using Regression in the Context of Indian Stock Market," JRFM, MDPI, vol. 14(8), pages 1-10, August.
    4. Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Aug 2024.
    5. Zhang, Hua & Chen, Jinyu & Shao, Liuguo, 2021. "Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19," International Review of Financial Analysis, Elsevier, vol. 77(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    8. Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
    9. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    10. Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
    11. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    12. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    13. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    14. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    15. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    16. Bumho Son & Yunyoung Lee & Seongwan Park & Jaewook Lee, 2023. "Forecasting global stock market volatility: The impact of volatility spillover index in spatial‐temporal graph‐based model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1539-1559, November.
    17. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).

  5. Vanessa Berenguer-Rico & Ines Wilms, 2021. "Heteroscedasticity testing after outlier removal," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 51-85, January.

    Cited by:

    1. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).

  6. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).

    Cited by:

    1. Blanc-Blocquel, Augusto & Ortiz-Gracia, Luis & Oviedo, Rodolfo, 2024. "Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 430-445.
    2. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    3. Amine Ben Amar & Mondher Bouattour & Makram Bellalah & Stephane Goutte, 2024. "Shift Contagion and Minimum Causal Intensity Portfolio During the COVID-19 and the Ongoing Russia-Ukraine Conflict," Working Papers hal-04522103, HAL.
    4. Amal Abricha & Amine Ben Amar & Makram Bellalah, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," Post-Print hal-04515196, HAL.
    5. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    6. Salah Uddin, Gazi & Lucey, Brian & Rahman, Md Lutfur & Stenvall, David, 2024. "Quantile coherency across bonds, commodities, currencies, and equities," Journal of Commodity Markets, Elsevier, vol. 33(C).
    7. Mutaju Isaack Marobhe & Jonathan Mukiza Peter Kansheba, 2023. "High frequency volatility spillover between oil and non-energy commodities during crisis and tranquil periods," SN Business & Economics, Springer, vol. 3(4), pages 1-27, April.
    8. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    9. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
    10. Sun, Yanpeng & Mirza, Nawazish & Qadeer, Abdul & Hsueh, Hsin-Pei, 2021. "Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed?," Resources Policy, Elsevier, vol. 72(C).
    11. Miroslava Ivanova & Lilko Dospatliev, 2023. "Effects of Diesel Price on Changes in Agricultural Commodity Prices in Bulgaria," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    12. K. Abhaya Kumar & Prakash Pinto & Iqbal Thonse Hawaldar & Saheem Shaikh & Shravan Bhagav & B. Padmanabha, 2022. "Investigating the Nexus between Crude Oil Price and Stock Prices of Oil Exploration Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 40-47, July.
    13. Chen, Hao & Xu, Chao & Peng, Yun, 2022. "Time-frequency connectedness between energy and nonenergy commodity markets during COVID-19: Evidence from China," Resources Policy, Elsevier, vol. 78(C).
    14. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    15. Chuliá, Helena & Klein, Tony & Muñoz Mendoza, Jorge A. & Uribe, Jorge M., 2024. "Vulnerability of European electricity markets: A quantile connectedness approach," Energy Policy, Elsevier, vol. 184(C).
    16. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    17. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Hammoudeh, Shawkat, 2022. "The connectedness in the world petroleum futures markets using a Quantile VAR approach," Journal of Commodity Markets, Elsevier, vol. 27(C).
    18. Hedi Ben Haddad & Imed Mezghani & Abdessalem Gouider, 2021. "The Dynamic Spillover Effects of Macroeconomic and Financial Uncertainty on Commodity Markets Uncertainties," Economies, MDPI, vol. 9(2), pages 1-22, June.
    19. Tadahiro Nakajima & Yuki Toyoshima, 2020. "Examination of the Spillover Effects among Natural Gas and Wholesale Electricity Markets Using Their Futures with Different Maturities and Spot Prices," Energies, MDPI, vol. 13(7), pages 1-14, March.
    20. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    21. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    22. Apergis, Nicholas, 2023. "Realized higher-order moments spillovers across cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    23. Li, Houjian & Li, Yanjiao & Guo, Lili, 2023. "Extreme risk spillover effect and dynamic linkages between uncertainty and commodity markets: A comparison between China and America," Resources Policy, Elsevier, vol. 85(PA).
    24. Mohammad Isleimeyyeh & Amine Ben Amar & Stéphane Goutte & Ramzi Benkraiem, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," Post-Print hal-03674806, HAL.
    25. Mishra, Aswini Kumar & Arunachalam, Vairam & Olson, Dennis & Patnaik, Debasis, 2023. "Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 82(C).
    26. Néjib Hachicha & Amine Ben Amar & Ikrame Ben Slimane & Makram Bellalah & Jean-Luc Prigent, 2022. "Dynamic connectedness and optimal hedging strategy among commodities and financial indices," Post-Print hal-03745047, HAL.
    27. Feng, Qianqian & Sun, Xiaolei & Liu, Chang & Li, Jianping, 2021. "Spillovers between sovereign CDS and exchange rate markets: The role of market fear," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    28. Ben Amar, Amine & Goutte, Stéphane & Isleimeyyeh, Mohammad, 2022. "Asymmetric cyclical connectedness on the commodity markets: Further insights from bull and bear markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 386-400.
    29. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    30. Derick Quintino & Cristiane Ogino & Inzamam Ul Haq & Paulo Ferreira & Márcia Oliveira, 2023. "An Analysis of Dynamic Correlations among Oil, Natural Gas and Ethanol Markets: New Evidence from the Pre- and Post-COVID-19 Crisis," Energies, MDPI, vol. 16(5), pages 1-14, February.
    31. Umar, Zaghum & Manel, Youssef & Riaz, Yasir & Gubareva, Mariya, 2021. "Return and volatility transmission between emerging markets and US debt throughout the pandemic crisis," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    32. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    33. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    34. Romain Menier & Guillaume Bagnarosa & Alexandre Gohin, 2024. "On the dependence structure of European vegetable oil markets," Post-Print hal-04523660, HAL.
    35. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Multiscale spillovers, connectedness, and portfolio management among precious and industrial metals, energy, agriculture, and livestock futures," Resources Policy, Elsevier, vol. 74(C).
    36. Adeleke, Musefiu A. & Awodumi, Olabanji B. & Adewuyi, Adeolu O., 2022. "Return and volatility connectedness among commodity markets during major crises periods: Static and dynamic analyses with asymmetries," Resources Policy, Elsevier, vol. 79(C).

  7. I. Wilms & C. Croux, 2018. "An algorithm for the multivariate group lasso with covariance estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(4), pages 668-681, March.
    See citations under working paper version above.
  8. Ines Wilms & Luca Barbaglia & Christophe Croux, 2018. "Multiclass vector auto‐regressive models for multistore sales data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 435-452, February.
    See citations under working paper version above.
  9. Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.

    Cited by:

    1. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Working Paper Series in Economics 124, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org, revised Jul 2024.
    3. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    4. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
    5. Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
    6. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
    7. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    8. Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    10. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    11. Constantin Anghelache & Madalina-Gabriela Anghel & Alina-Georgiana Solomon, 2017. "National Accounts System: Source of Information in Macroeconomic Forecast," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 7(2), pages 76-82, April.
    12. Constantin ANGHELACHE & Madalina-Gabriela ANGHEL & Tudor SAMSON & Radu STOICA, 2017. "Methods And Techniques For Preparing Forecasts," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(4), pages 26-36, April.
    13. Renjie Lu & Philip L.H. Yu & Xiaohang Wang, 2020. "Sparse vector error correction models with application to cointegration‐based trading," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 297-321, September.
    14. Florin Paul Costel LILEA & Aurelian DIACONU & Radu Titus MARINESCU & Gyorgy BODO, 2017. "Structural Methods Used In Forecasting Studies," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(4), pages 66-74, April.
    15. Ziping Zhao & Daniel P. Palomar, 2017. "Robust Maximum Likelihood Estimation of Sparse Vector Error Correction Model," Papers 1710.05513, arXiv.org.
    16. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    17. David Neto, 2023. "Penalized leads-and-lags cointegrating regression: a simulation study and two empirical applications," Empirical Economics, Springer, vol. 65(2), pages 949-971, August.

  10. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
    See citations under working paper version above.
  11. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.

    Cited by:

    1. Karray, Salma & Martín-Herrán, Guiomar & Zaccour, Georges, 2020. "Pricing of demand-related products: Can ignoring cross-category effect be a smart choice?," International Journal of Production Economics, Elsevier, vol. 223(C).
    2. Reuvers, Hanno & Wijler, Etienne, 2024. "Sparse generalized Yule–Walker estimation for large spatio-temporal autoregressions with an application to NO2 satellite data," Journal of Econometrics, Elsevier, vol. 239(1).
    3. Chenarides, Lauren & Gomez, Miguel I. & Richards, Timothy J. & Yonezawa, Koichi, 2021. "Retail Markups and Discount Store Entry," 2021 Annual Meeting, August 1-3, Austin, Texas 313348, Agricultural and Applied Economics Association.
    4. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    5. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    6. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    7. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    8. Alexander Faehnle & Mariangela Guidolin, 2021. "Dynamic Pricing Recognition on E-Commerce Platforms with VAR Processes," Forecasting, MDPI, vol. 3(1), pages 1-15, March.
    9. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
    10. Agarwal, Manoj K. & Ma, Zecong & Park, Chang Hee & Zheng, Yilong, 2022. "The impact of a manufacturer’s financial liquidity on its market strategies and pricing and promotion decisions in retail grocery markets," Journal of Business Research, Elsevier, vol. 142(C), pages 844-857.
    11. Keun Hee Lee & Mali Abdollahian & Sergei Schreider & Sona Taheri, 2023. "Supply Chain Demand Forecasting and Price Optimisation Models with Substitution Effect," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    12. Karray, Salma & Sigue, Simon P., 2016. "Should companies jointly promote their complementary products when they compete in other product categories?," European Journal of Operational Research, Elsevier, vol. 255(2), pages 620-630.
    13. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach," Papers 1708.02073, arXiv.org.
    14. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    15. Hanno Reuvers & Etienne Wijler, 2021. "Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal Autoregressions with an Application to NO2 Satellite Data," Papers 2108.02864, arXiv.org, revised Dec 2021.

  12. Wilms, Ines & Gelper, Sarah & Croux, Christophe, 2016. "The predictive power of the business and bank sentiment of firms: A high-dimensional Granger Causality approach," European Journal of Operational Research, Elsevier, vol. 254(1), pages 138-147.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 20 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (14) 2016-07-02 2016-11-06 2017-01-15 2017-08-13 2018-06-25 2020-08-24 2021-02-15 2021-03-01 2022-10-17 2023-02-27 2023-03-13 2024-07-15 2024-08-12 2024-09-02. Author is listed
  2. NEP-ETS: Econometric Time Series (11) 2016-07-02 2017-08-13 2017-09-10 2020-08-24 2020-08-24 2021-03-01 2022-10-17 2023-02-27 2023-03-13 2024-08-12 2024-09-02. Author is listed
  3. NEP-RMG: Risk Management (3) 2016-11-06 2017-08-13 2017-09-10
  4. NEP-BIG: Big Data (2) 2021-02-15 2024-03-25
  5. NEP-FOR: Forecasting (2) 2016-11-06 2024-03-25
  6. NEP-NET: Network Economics (2) 2021-02-15 2022-08-29
  7. NEP-ORE: Operations Research (2) 2018-06-25 2020-08-24
  8. NEP-PAY: Payment Systems and Financial Technology (2) 2023-04-03 2024-03-25
  9. NEP-AGR: Agricultural Economics (1) 2016-04-16
  10. NEP-CBA: Central Banking (1) 2024-07-15
  11. NEP-CMP: Computational Economics (1) 2024-03-25
  12. NEP-COM: Industrial Competition (1) 2016-07-02
  13. NEP-ENE: Energy Economics (1) 2017-09-10
  14. NEP-INT: International Trade (1) 2022-08-29
  15. NEP-MAC: Macroeconomics (1) 2021-03-01

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Ines Wilms should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.