IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.05513.html
   My bibliography  Save this paper

Robust Maximum Likelihood Estimation of Sparse Vector Error Correction Model

Author

Listed:
  • Ziping Zhao
  • Daniel P. Palomar

Abstract

In econometrics and finance, the vector error correction model (VECM) is an important time series model for cointegration analysis, which is used to estimate the long-run equilibrium variable relationships. The traditional analysis and estimation methodologies assume the underlying Gaussian distribution but, in practice, heavy-tailed data and outliers can lead to the inapplicability of these methods. In this paper, we propose a robust model estimation method based on the Cauchy distribution to tackle this issue. In addition, sparse cointegration relations are considered to realize feature selection and dimension reduction. An efficient algorithm based on the majorization-minimization (MM) method is applied to solve the proposed nonconvex problem. The performance of this algorithm is shown through numerical simulations.

Suggested Citation

  • Ziping Zhao & Daniel P. Palomar, 2017. "Robust Maximum Likelihood Estimation of Sparse Vector Error Correction Model," Papers 1710.05513, arXiv.org.
  • Handle: RePEc:arx:papers:1710.05513
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.05513
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
    4. Heino Bohn Nielsen, 2004. "Cointegration analysis in the presence of outliers," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 249-271, June.
    5. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-478, October.
    6. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    7. Franses, Philip Hans & Lucas, Andre, 1998. "Outlier Detection in Cointegration Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 459-468, October.
    8. Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.
    9. Franses, Philip Hans & Kloek, Teun & Lucas, Andre, 1998. "Outlier robust analysis of long-run marketing effects for weekly scanning data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 293-315, November.
    10. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    11. Lisha Chen & Jianhua Z. Huang, 2012. "Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1533-1545, December.
    12. Lucas, André, 1997. "Cointegration Testing Using Pseudolikelihood Ratio Tests," Econometric Theory, Cambridge University Press, vol. 13(2), pages 149-169, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    2. Ziping Zhao & Daniel P. Palomar, 2018. "Sparse Reduced Rank Regression With Nonconvex Regularization," Papers 1803.07247, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Matteo Pelagatti & Bruno Bosco & Lucia Parisio & Fabio Baldi, 2007. "A Robust Multivariate Long Run Analysis of European Electricity Prices," Working Papers 2007.103, Fondazione Eni Enrico Mattei.
    3. Matteo Pelagatti & Bruno Bosco & Lucia Parisio & Fabio Baldi, 2007. "A Robust Multivariate Long Run Analysis of European Electricity Prices," Working Papers 2007.103, Fondazione Eni Enrico Mattei.
    4. Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
    5. Carlomagno, Guillermo, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Boswijk, H. Peter & Lucas, André & Taylor, Nick, 1998. "A comparison of parametric, semi-nonparametric, adaptive and nonparametric tests," Serie Research Memoranda 0062, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Miguel Arranz & Alvaro Escribano, 2004. "Outliers - robust ECM cointegration tests based on the trend components," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(4), pages 243-266, December.
    8. Barry Falk & Chun-Hsuan Wang, 2003. "Testing long-run PPP with infinite-variance returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 471-484.
    9. Franses, Philip Hans & Lucas, André, 1997. "Outlier robust cointegration analysis," Serie Research Memoranda 0045, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. H. Peter Boswijk & Andre Lucas & Nick Taylor, 1999. "A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests," Tinbergen Institute Discussion Papers 99-012/4, Tinbergen Institute.
    11. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    12. Carmen Camacho & Fabio Mariani & Luca Pensieroso, 2017. "Illegal immigration and the shadow economy," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1050-1080, December.
    13. Muriel Dejemeppe & Catherine Smith & Bruno der Linden, 2015. "Did the Intergenerational Solidarity Pact increase the employment rate of older workers in Belgium? A macro-econometric evaluation," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 4(1), pages 1-23, December.
    14. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    15. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
    16. Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.
    17. Gaolu Zou & K. W. Chau, 2019. "Long- and Short-Run Effects of Fuel Prices on Freight Transportation Volumes in Shanghai," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    18. Avdoulas, Christos & Bekiros, Stelios & Boubaker, Sabri, 2016. "Detecting nonlinear dependencies in eurozone peripheral equity markets: A multistep filtering approach," Economic Modelling, Elsevier, vol. 58(C), pages 580-587.
    19. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    20. Franses, Philip Hans & Kloek, Teun & Lucas, Andre, 1998. "Outlier robust analysis of long-run marketing effects for weekly scanning data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 293-315, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.05513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.