IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp430-445.html
   My bibliography  Save this article

Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation

Author

Listed:
  • Blanc-Blocquel, Augusto
  • Ortiz-Gracia, Luis
  • Oviedo, Rodolfo

Abstract

We propose novel Bitcoin-denominated derivatives contracts on carbon bonds. We consider a futures contract on carbon bonds where its price is expressed in terms of bitcoins. Then, we put forward options on a futures contract of the former type. Governments can use such contracts to hedge climate change and influence the prices of carbon bonds and cryptocurrencies. We show how these derivatives transfer volatility to the bitcoin market without a negative effect in the carbon bonds market. Since the aforementioned options are not yet traded in the market, we price them by assuming that the underlying is driven by the well-known Heston model, where the model parameters are estimated by a novel method based on Shannon wavelets. Heston model belongs to the class of stochastic volatility (SV) models. The discrete observations from the SV model can be seen as a state-space model, that is, a stochastic model in discrete-time which contains two sets of equations, the state equation and the observation equation. While the first describes the transition of a latent process in time, the second shows how an observer measures the latent process at each time period. We infer the properties of the latent variable by means of a filtering algorithm, and we estimate the parameters of the model via maximum likelihood. The evaluation of the likelihood function is a time-consuming task that involves updating and prediction steps of the state variable, leading to the computation of complicated integrals. We calculate these integrals by means of an integration method based on Shannon wavelets, and compare the root mean square error (RMSE) of the estimation with state-of-the-art methods. The results show that the RSME is dramatically reduced in a short CPU time with the use of wavelets.

Suggested Citation

  • Blanc-Blocquel, Augusto & Ortiz-Gracia, Luis & Oviedo, Rodolfo, 2024. "Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 430-445.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:430-445
    DOI: 10.1016/j.matcom.2024.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:430-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.