IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v40y2021i1p51-85.html
   My bibliography  Save this article

Heteroscedasticity testing after outlier removal

Author

Listed:
  • Vanessa Berenguer-Rico
  • Ines Wilms

Abstract

Given the effect that outliers can have on regression and specification testing, a vastly used robustification strategy by practitioners consists in: (i) starting the empirical analysis with an outlier detection procedure to deselect atypical data values; then (ii) continuing the analysis with the selected non-outlying observations. The repercussions of such robustifying procedure on the asymptotic properties of subsequent inferential procedures are, however, underexplored. We study the effects of such a strategy on testing for heteroscedasticity. Specifically, using weighted and marked empirical processes of residuals theory, we show that the White test implemented after the outlier detection and removal is asymptotically chi-square if the underlying errors are symmetric. In a simulation study, we show that—depending on the type of outliers—the standard White test can be either severely undersized or oversized, as well as have trivial power. The statistic applied after deselecting outliers has good finite sample properties under symmetry but can suffer from size distortions under asymmetric errors. Given these results, we devise an empirical modeling strategy to guide practitioners whose preferred approach is to remove outliers from the sample.

Suggested Citation

  • Vanessa Berenguer-Rico & Ines Wilms, 2021. "Heteroscedasticity testing after outlier removal," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 51-85, January.
  • Handle: RePEc:taf:emetrv:v:40:y:2021:i:1:p:51-85
    DOI: 10.1080/07474938.2020.1735749
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2020.1735749
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2020.1735749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:40:y:2021:i:1:p:51-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.