IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p915-d770111.html
   My bibliography  Save this article

Supervised Learning Perspective in Logic Mining

Author

Listed:
  • Mohd Shareduwan Mohd Kasihmuddin

    (School of Mathematical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia)

  • Siti Zulaikha Mohd Jamaludin

    (School of Mathematical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia)

  • Mohd. Asyraf Mansor

    (School of Distance Education, Universiti Sains Malaysia, George Town 11800, Malaysia)

  • Habibah A. Wahab

    (School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia)

  • Siti Maisharah Sheikh Ghadzi

    (School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia)

Abstract

Creating optimal logic mining is strongly dependent on how the learning data are structured. Without optimal data structure, intelligence systems integrated into logic mining, such as an artificial neural network, tend to converge to suboptimal solution. This paper proposed a novel logic mining that integrates supervised learning via association analysis to identify the most optimal arrangement with respect to the given logical rule. By utilizing Hopfield neural network as an associative memory to store information of the logical rule, the optimal logical rule from the correlation analysis will be learned and the corresponding optimal induced logical rule can be obtained. In other words, the optimal logical rule increases the chances for the logic mining to locate the optimal induced logic that generalize the datasets. The proposed work is extensively tested on a variety of benchmark datasets with various performance metrics. Based on the experimental results, the proposed supervised logic mining demonstrated superiority and the least competitiveness compared to the existing method.

Suggested Citation

  • Mohd Shareduwan Mohd Kasihmuddin & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor & Habibah A. Wahab & Siti Maisharah Sheikh Ghadzi, 2022. "Supervised Learning Perspective in Logic Mining," Mathematics, MDPI, vol. 10(6), pages 1-35, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:915-:d:770111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    2. de Azevedo, Guilherme Henrique Ismael & Pessoa, Artur Alves & Subramanian, Anand, 2021. "A satisfiability and workload-based exact method for the resource constrained project scheduling problem with generalized precedence constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 809-824.
    3. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaeithry Manoharam & Mohd Shareduwan Mohd Kasihmuddin & Siti Noor Farwina Mohamad Anwar Antony & Nurul Atiqah Romli & Nur ‘Afifah Rusdi & Suad Abdeen & Mohd. Asyraf Mansor, 2023. "Log-Linear-Based Logic Mining with Multi-Discrete Hopfield Neural Network," Mathematics, MDPI, vol. 11(9), pages 1-30, April.
    2. Suad Abdeen & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Gaeithry Manoharam & Mohd. Asyraf Mansor & Nada Alshehri, 2023. "S-Type Random k Satisfiability Logic in Discrete Hopfield Neural Network Using Probability Distribution: Performance Optimization and Analysis," Mathematics, MDPI, vol. 11(4), pages 1-46, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    2. da Silva Filho, Flávio Lopes, 2022. "Aplicação do modelo de séries temporais para previsão do número de passageiros de uma companhia aérea," SocArXiv gmyaj, Center for Open Science.
    3. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    4. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    5. Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    6. Han Wu & Junwu Wang, 2021. "A Method for Prediction of Waterlogging Economic Losses in a Subway Station Project," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    7. Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
    8. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
    9. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    10. Fu, Saiji & Tian, Yingjie & Tang, Long, 2023. "Robust regression under the general framework of bounded loss functions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1325-1339.
    11. Carmona-Benítez, Rafael Bernardo & Nieto, María Rosa, 2020. "SARIMA damp trend grey forecasting model for airline industry," Journal of Air Transport Management, Elsevier, vol. 82(C).
    12. Honglin Xiong & Chongjun Fan & Hongmin Chen & Yun Yang & Collins Opoku ANTWI & Xiaomao Fan, 2022. "A Novel Approach to Air Passenger Index Prediction: Based on Mutual Information Principle and Support Vector Regression Blended Model," SAGE Open, , vol. 12(1), pages 21582440211, January.
    13. Tillmann, Andreas M. & Joormann, Imke & Ammann, Sabrina C.L., 2023. "Reproducible air passenger demand estimation," Journal of Air Transport Management, Elsevier, vol. 112(C).
    14. Li Long, Chan & Guleria, Yash & Alam, Sameer, 2021. "Air passenger forecasting using Neural Granger causal Google trend queries," Journal of Air Transport Management, Elsevier, vol. 95(C).
    15. Rui Ding & Jun Fu & Yiming Du & Linyu Du & Tao Zhou & Yilin Zhang & Siwei Shen & Yuqi Zhu & Shihui Chen, 2022. "Structural Evolution and Community Detection of China Rail Transit Route Network," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    16. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
    17. Hossein Tarighi & Zeynab Nourbakhsh Hosseiny & Maryam Akbari & Elaheh Mohammadhosseini, 2023. "The Moderating Effect of the COVID-19 Pandemic on the Relation between Corporate Governance and Firm Performance," JRFM, MDPI, vol. 16(7), pages 1-43, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:915-:d:770111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.