IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301584.html
   My bibliography  Save this article

Two sample tests for high-dimensional autocovariances

Author

Listed:
  • Baek, Changryong
  • Gates, Katheleen M.
  • Leinwand, Benjamin
  • Pipiras, Vladas

Abstract

The problem of testing for the equality of autocovariances of two independent high-dimensional time series is studied. Tests based on the suprema or sums of suitable averages across the dimensions are adapted from the available literature. Another test based on principal component analysis (PCA) is introduced and studied in theory. An extension is also considered to the setting of testing for the equality of autocovariances of two populations, having multiple individual high-dimensional series from the two populations. The proposed methodologies are assessed on simulated data, with the performance of the introduced PCA testing being superior overall. An application using fMRI data from individuals experiencing two different emotional states is provided.

Suggested Citation

  • Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301584
    DOI: 10.1016/j.csda.2020.107067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301584
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ines Wilms & Luca Barbaglia & Christophe Croux, 2018. "Multiclass vector auto‐regressive models for multistore sales data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 435-452, February.
    2. Zhou Zhou, 2013. "Heteroscedasticity and Autocorrelation Robust Structural Change Detection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 726-740, June.
    3. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    6. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    7. Jinyuan Chang & Qiwei Yao & Wen Zhou, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," Biometrika, Biometrika Trust, vol. 104(1), pages 111-127.
    8. repec:hal:journl:peer-00844811 is not listed on IDEAS
    9. Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
    10. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    11. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    12. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    13. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    14. Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
    15. Han, Xu & Inoue, Atsushi, 2015. "Tests For Parameter Instability In Dynamic Factor Models," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1117-1152, October.
    16. Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
    17. Jinyuan Chang & Chao Zheng & Wen‐Xin Zhou & Wen Zhou, 2017. "Simulation‐based hypothesis testing of high dimensional means under covariance heterogeneity," Biometrics, The International Biometric Society, vol. 73(4), pages 1300-1310, December.
    18. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, September.
    19. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    20. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    21. Ali Shojaie & George Michailidis, 2010. "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs," Biometrika, Biometrika Trust, vol. 97(3), pages 519-538.
    22. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    23. Robert Lund & Hany Bassily & Brani Vidakovic, 2009. "Testing equality of stationary autocovariances," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 332-348, May.
    24. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    25. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byungsoo Kim & Junmo Song & Changryong Baek, 2021. "Robust test for structural instability in dynamic factor models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 821-853, August.
    2. Changryong Baek & Benjamin Leinwand & Kristen A. Lindquist & Seok-Oh Jeong & Joseph Hopfinger & Katheleen M. Gates & Vladas Pipiras, 2023. "Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 636-655, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    3. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Poncela, Pilar, 2021. "Dynamic factor models: does the specification matter?," DES - Working Papers. Statistics and Econometrics. WS 32210, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    8. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    9. Luke Hartigan, 2015. "Changes in the Factor Structure of the U.S. Economy: Permanent Breaks or Business Cycle Regimes?," Discussion Papers 2015-17, School of Economics, The University of New South Wales.
    10. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    11. Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
    12. Steffen R. Henzel & Malte Rengel, 2017. "Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
    13. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    14. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    15. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    16. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    17. repec:cte:wsrepe:23974 is not listed on IDEAS
    18. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    19. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    20. Lixiu Wu & Jiang Hu, 2024. "Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 579-615, August.
    21. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.