IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921011425.html
   My bibliography  Save this article

Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement

Author

Listed:
  • Hwang, Eunju

Abstract

This paper is devoted to modeling and predicting COVID-19 confirmed cases through a multiple linear regression. Especially, prediction intervals of the COVID-19 cases are extensively studied. Due to long-memory feature of the COVID-19 data, a heterogeneous autoregression (HAR) is adopted with Growth rates and Vaccination rates; it is called HAR-G-V model. Top eight affected countries are taken with their daily confirmed cases and vaccination rates. Model criteria results such as root mean square error (RMSE), mean absolute error (MAE), R2, AIC and BIC are reported in the HAR models with/without the two rates. The HAR-G-V model performs better than other HAR models. Out-of-sample forecasting by the HAR-G-V model is conducted. Forecast accuracy measures such as RMSE, MAE, mean absolute percentage error and root relative square error are computed. Furthermore, three types of prediction intervals are constructed by approximating residuals to normal and Laplace distributions, as well as by employing bootstrap procedure. Empirical coverage probability, average length and mean interval score are evaluated for the three prediction intervals. This work contributes three folds: a novel trial to combine both growth rates and vaccination rates in modeling COVID-19; construction and comparison of three types of prediction intervals; and an attempt to improve coverage probability and mean interval score of prediction intervals via bootstrap technique.

Suggested Citation

  • Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011425
    DOI: 10.1016/j.chaos.2021.111789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    2. Soukhovolsky, Vladislav & Kovalev, Anton & Pitt, Anne & Kessel, Boris, 2020. "A new modelling of the COVID 19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Prasanth, Sikakollu & Singh, Uttam & Kumar, Arun & Tikkiwal, Vinay Anand & Chong, Peter H.J., 2021. "Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    5. Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Hwang, Eunju & Hong, Won-Tak, 2021. "A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation," Economics Letters, Elsevier, vol. 203(C).
    7. Edouard Mathieu & Hannah Ritchie & Esteban Ortiz-Ospina & Max Roser & Joe Hasell & Cameron Appel & Charlie Giattino & Lucas Rodés-Guirao, 2021. "A global database of COVID-19 vaccinations," Nature Human Behaviour, Nature, vol. 5(7), pages 947-953, July.
    8. Reis, Ruy Freitas & de Melo Quintela, Bárbara & de Oliveira Campos, Joventino & Gomes, Johnny Moreira & Rocha, Bernardo Martins & Lobosco, Marcelo & Weber dos Santos, Rodrigo, 2020. "Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    10. Ekinci, Aykut, 2021. "Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Won-Tak Hong & Jiwon Lee & Eunju Hwang, 2020. "A Note on the Asymptotic Normality Theory of the Least Squares Estimates in Multivariate HAR-RV Models," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    13. Feroze, Navid, 2020. "Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    17. Maleki, Mohsen & Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Pho, Kim-Hung, 2020. "Modeling and forecasting the spread and death rate of coronavirus (COVID-19) in the world using time series models," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    19. Pitchaimani, M. & Brasanna Devi, M., 2021. "Stochastic probical strategies in a delay virus infection model to combat COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. J. Bracher & D. Wolffram & J. Deuschel & K. Görgen & J. L. Ketterer & A. Ullrich & S. Abbott & M. V. Barbarossa & D. Bertsimas & S. Bhatia & M. Bodych & N. I. Bosse & J. P. Burgard & L. Castro & G. Fa, 2021. "A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    21. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    22. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H, 2020. "Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    23. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunju Hwang, 2023. "Improvement on Forecasting of Propagation of the COVID-19 Pandemic through Combining Oscillations in ARIMA Models," Forecasting, MDPI, vol. 6(1), pages 1-18, December.
    2. He, Yaoyao & Wang, Yun & Wang, Shuo & Yao, Xin, 2022. "A cooperative ensemble method for multistep wind speed probabilistic forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Alexander Gusev & Alexander Chervyakov & Anna Alexeenko & Evgeny Nikulchev, 2023. "Particle Swarm Training of a Neural Network for the Lower Upper Bound Estimation of the Prediction Intervals of Time Series," Mathematics, MDPI, vol. 11(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    5. Kafieh, Rahele & Saeedizadeh, Narges & Arian, Roya & Amini, Zahra & Serej, Nasim Dadashi & Vaezi, Atefeh & Javanmard, Shaghayegh Haghjooy, 2020. "Isfahan and Covid-19: Deep spatiotemporal representation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    7. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    8. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    9. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    10. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    11. Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
    12. Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
    13. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    14. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    15. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    16. Zhu, Cheng-Cheng & Zhu, Jiang, 2021. "Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    18. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    20. Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Aug 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.