Robust regression under the general framework of bounded loss functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2023.04.025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
- Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.
- Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
- Liang, Xijun & Zhang, Zhipeng & Song, Yunquan & Jian, Ling, 2022. "Kernel-based online regression with canal loss," European Journal of Operational Research, Elsevier, vol. 297(1), pages 268-279.
- Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ozcan, Erhan C. & Görgülü, Berk & Baydogan, Mustafa G., 2024. "Column generation-based prototype learning for optimizing area under the receiver operating characteristic curve," European Journal of Operational Research, Elsevier, vol. 314(1), pages 297-307.
- Yuxun Wang & Liang Fang & Chao Liu & Lanxin Wang & Huimei Xu, 2023. "The Influential Factors of the Habitat Quality of the Red-crowned Crane: A Case Study of Yancheng, Jiangsu Province, China," Land, MDPI, vol. 12(6), pages 1-20, June.
- Huang, Ling-Wei & Shao, Yuan-Hai & Lv, Xiao-Jing & Li, Chun-Na, 2024. "Large-scale robust regression with truncated loss via majorization-minimization algorithm," European Journal of Operational Research, Elsevier, vol. 319(2), pages 494-504.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Ling-Wei & Shao, Yuan-Hai & Lv, Xiao-Jing & Li, Chun-Na, 2024. "Large-scale robust regression with truncated loss via majorization-minimization algorithm," European Journal of Operational Research, Elsevier, vol. 319(2), pages 494-504.
- Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021.
"Forecasting recovery rates on non-performing loans with machine learning,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Reprints LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Discussion Papers LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Jochen Güntner & Benjamin Karner, 2023. "The bond agio premium," Economics working papers 2023-13, Department of Economics, Johannes Kepler University Linz, Austria.
- Konstantin Gorgen & Abdolreza Nazemi & Melanie Schienle, 2022. "Robust Knockoffs for Controlling False Discoveries With an Application to Bond Recovery Rates," Papers 2206.06026, arXiv.org.
- Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
- Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
- Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
- Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021.
"China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
- Shao, Yongtong & Xiong, Tao & Li, Minghao & Hayes, Dermot & Zhang, Wendong & Xie, Wei, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," ISU General Staff Papers 202001010800001619, Iowa State University, Department of Economics.
- Yongtong Shao & Minghao Li & Dermot J. Hayes & Wendong Zhang & Tao Xiong & Wei Xie, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," Center for Agricultural and Rural Development (CARD) Publications 20-wp607, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
- Zhiqiang Liao, 2024. "Variable selection in convex nonparametric least squares via structured Lasso: An application to the Swedish electricity distribution networks," Papers 2409.01911, arXiv.org, revised Nov 2024.
- Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.
- Shang, Han Lin & Kearney, Fearghal, 2022.
"Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
- Han Lin Shang & Fearghal Kearney, 2021. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," Papers 2107.14026, arXiv.org.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Hu, Ting & Xiong, Jing, 2024. "Sparse online regression algorithm with insensitive loss functions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Fazlollah Soleymani & Houman Masnavi & Stanford Shateyi, 2020. "Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
More about this item
Keywords
Robustness and sensitivity analysis; Bounded loss function; Regression; Least squares loss function; Support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:3:p:1325-1339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.