IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1533-d336634.html
   My bibliography  Save this article

Examination of the Spillover Effects among Natural Gas and Wholesale Electricity Markets Using Their Futures with Different Maturities and Spot Prices

Author

Listed:
  • Tadahiro Nakajima

    (The Kansai Electric Power Company Incorporated, Osaka 530-8270, Japan
    Graduate School of Economics, Kobe University, Kobe 657-8501, Japan)

  • Yuki Toyoshima

    (Shinsei Bank, Limited, Tokyo 103-8303, Japan)

Abstract

This study measures the connectedness of natural gas and electricity spot returns to their futures returns with different maturities. We employ the Henry Hub and the Pennsylvania, New Jersey, and Maryland (PJM) Western Hub Peak as the natural gas price indicator and the wholesale electricity price indicator, respectively. We also use each commodity’s spot prices and 12 types of futures prices with one to twelve months maturities and realize results in fourfold. First, we observe mutual spillover effects between natural gas futures returns and learn that the natural gas futures market is integrated. Second, we observe the spillover effects from natural gas futures returns to natural gas spot returns (however, the same is not evident for natural gas spot returns to natural gas futures returns). We find that futures markets have better natural gas price discovery capabilities than spot markets. Third, we observe the spillover effects from natural gas spot returns to electricity spot returns, and the spillover effects from natural gas futures returns to electricity futures returns. We learn that the marginal cost of power generation (natural gas prices) is passed through to electricity prices. Finally, we do not observe any spillover effects amongst electricity futures returns, except for some combinations, and learn that the electricity futures market is not integrated.

Suggested Citation

  • Tadahiro Nakajima & Yuki Toyoshima, 2020. "Examination of the Spillover Effects among Natural Gas and Wholesale Electricity Markets Using Their Futures with Different Maturities and Spot Prices," Energies, MDPI, vol. 13(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1533-:d:336634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
    2. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    3. Tadahiro Nakajima & Yuki Toyoshima, 2019. "Measurement of Connectedness and Frequency Dynamics in Global Natural Gas Markets," Energies, MDPI, vol. 12(20), pages 1-15, October.
    4. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    5. repec:clg:wpaper:1999-04 is not listed on IDEAS
    6. Mohammadi, Hassan, 2009. "Electricity prices and fuel costs: Long-run relations and short-run dynamics," Energy Economics, Elsevier, vol. 31(3), pages 503-509, May.
    7. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    8. Malik, Farooq & Umar, Zaghum, 2019. "Dynamic connectedness of oil price shocks and exchange rates," Energy Economics, Elsevier, vol. 84(C).
    9. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    10. Husain, Shaiara & Tiwari, Aviral Kumar & Sohag, Kazi & Shahbaz, Muhammad, 2019. "Connectedness among crude oil prices, stock index and metal prices: An application of network approach in the USA," Resources Policy, Elsevier, vol. 62(C), pages 57-65.
    11. Apostolos Serletis & John Herbert, 2007. "The Message in North American Energy Prices," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 13, pages 156-171, World Scientific Publishing Co. Pte. Ltd..
    12. Nakajima, Tadahiro, 2013. "Inefficient and opaque price formation in the Japan Electric Power Exchange," Energy Policy, Elsevier, vol. 55(C), pages 329-334.
    13. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    14. Apostolos Serletis & Akbar Shahmoradi, 2007. "Measuring and Testing Natural Gas and Electricity Markets Volatility: Evidence from Alberta's Deregulated Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 16, pages 205-220, World Scientific Publishing Co. Pte. Ltd..
    15. Tadahiro Nakajima, 2019. "Expectations for Statistical Arbitrage in Energy Futures Markets," JRFM, MDPI, vol. 12(1), pages 1-12, January.
    16. Gary W. Emery & Qingfeng (Wilson) Liu, 2002. "An analysis of the relationship between electricity and natural‐gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(2), pages 95-122, February.
    17. Xiao, Binqing & Yang, Ye & Peng, Xuerong & Fang, Libing, 2019. "Measuring the connectedness of European electricity markets using the network topology of variance decompositions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    19. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    20. Mjelde, James W. & Bessler, David A., 2009. "Market integration among electricity markets and their major fuel source markets," Energy Economics, Elsevier, vol. 31(3), pages 482-491, May.
    21. Yijin He & Tadahiro Nakajima & Shigeyuki Hamori, 2019. "Connectedness Between Natural Gas Price and BRICS Exchange Rates: Evidence from Time and Frequency Domains," Energies, MDPI, vol. 12(20), pages 1-28, October.
    22. Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
    23. Wenting Zhang & Xie He & Tadahiro Nakajima & Shigeyuki Hamori, 2020. "How Does the Spillover among Natural Gas, Crude Oil, and Electricity Utility Stocks Change over Time? Evidence from North America and Europe," Energies, MDPI, vol. 13(3), pages 1-26, February.
    24. Sun, Qingru & An, Haizhong & Gao, Xiangyun & Guo, Sui & Wang, Ze & Liu, Siyao & Wen, Shaobo, 2019. "Effects of crude oil shocks on the PPI system based on variance decomposition network analysis," Energy, Elsevier, vol. 189(C).
    25. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    26. Nakajima, Tadahiro & Hamori, Shigeyuki, 2013. "Testing causal relationships between wholesale electricity prices and primary energy prices," Energy Policy, Elsevier, vol. 62(C), pages 869-877.
    27. Wang, Bangcan & Wei, Yu & Xing, Yuhui & Ding, Wenjiao, 2019. "Multifractal detrended cross-correlation analysis and frequency dynamics of connectedness for energy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    28. Moutinho, Victor & Vieira, Joel & Carrizo Moreira, António, 2011. "The crucial relationship among energy commodity prices: Evidence from the Spanish electricity market," Energy Policy, Elsevier, vol. 39(10), pages 5898-5908, October.
    29. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    30. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    31. Jin, Jingyu & Yu, Jiang & Hu, Yang & Shang, Yue, 2019. "Which one is more informative in determining price movements of hedging assets? Evidence from Bitcoin, gold and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    32. Woo, Chi-Keung & Olson, Arne & Horowitz, Ira & Luk, Stephen, 2006. "Bi-directional causality in California's electricity and natural-gas markets," Energy Policy, Elsevier, vol. 34(15), pages 2060-2070, October.
    33. Chen, Shi & Karl Härdle, Wolfgang & López Cabrera, Brenda, 2019. "Regularization approach for network modeling of German power derivative market," Energy Economics, Elsevier, vol. 83(C), pages 180-196.
    34. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    35. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    36. Albulescu, Claudiu Tiberiu & Demirer, Riza & Raheem, Ibrahim D. & Tiwari, Aviral Kumar, 2019. "Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies," Energy Economics, Elsevier, vol. 83(C), pages 375-388.
    37. Singh, Vipul Kumar & Kumar, Pawan & Nishant, Shreyank, 2019. "Feedback spillover dynamics of crude oil and global assets indicators: A system-wide network perspective," Energy Economics, Elsevier, vol. 80(C), pages 321-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
    2. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Andr s Oviedo-G mez & Sandra Milena Londo o-Hern ndez & Diego Fernando Manotas-Duque, 2023. "Directional Spillover of Fossil Fuels Prices on a Hydrothermal Power Generation Market," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 85-90, January.
    4. Ben Amar, Amine & Goutte, Stéphane & Isleimeyyeh, Mohammad, 2022. "Asymmetric cyclical connectedness on the commodity markets: Further insights from bull and bear markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 386-400.
    5. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakajima, Tadahiro & Hamori, Shigeyuki, 2013. "Testing causal relationships between wholesale electricity prices and primary energy prices," Energy Policy, Elsevier, vol. 62(C), pages 869-877.
    2. Xia, Tongshui & Ji, Qiang & Geng, Jiang-Bo, 2020. "Nonlinear dependence and information spillover between electricity and fuel source markets: New evidence from a multi-scale analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Cui, Jinxin & Goh, Mark & Li, Binlin & Zou, Huiwen, 2021. "Dynamic dependence and risk connectedness among oil and stock markets: New evidence from time-frequency domain perspectives," Energy, Elsevier, vol. 216(C).
    4. Cui Jinxin & Zou Huiwen, 2020. "Connectedness Among Economic Policy Uncertainties: Evidence from the Time and Frequency Domain Perspectives," Journal of Systems Science and Information, De Gruyter, vol. 8(5), pages 401-433, October.
    5. Scarcioffolo, Alexandre R. & Etienne, Xiaoli, 2021. "Testing directional predictability between energy prices: A quantile-based analysis," Resources Policy, Elsevier, vol. 74(C).
    6. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    7. Tiantian Liu & Xie He & Tadahiro Nakajima & Shigeyuki Hamori, 2020. "Influence of Fluctuations in Fossil Fuel Commodities on Electricity Markets: Evidence from Spot and Futures Markets in Europe," Energies, MDPI, vol. 13(8), pages 1-20, April.
    8. Chae, Yeoungjin & Kim, Myunghwan & Yoo, Seung-Hoon, 2012. "Does natural gas fuel price cause system marginal price, vice-versa, or neither? A causality analysis," Energy, Elsevier, vol. 47(1), pages 199-204.
    9. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    10. Umar, Zaghum & Aharon, David Y. & Esparcia, Carlos & AlWahedi, Wafa, 2022. "Spillovers between sovereign yield curve components and oil price shocks," Energy Economics, Elsevier, vol. 109(C).
    11. Zhu, Huiming & Chen, Weiyan & Hau, Liya & Chen, Qitong, 2021. "Time-frequency connectedness of crude oil, economic policy uncertainty and Chinese commodity markets: Evidence from rolling window analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    12. Ohler, Adrienne & Mohammadi, Hassan & Loomis, David G., 2020. "Electricity restructuring and the relationship between fuel costs and electricity prices for industrial and residential customers," Energy Policy, Elsevier, vol. 142(C).
    13. Nasreen, Samia & Tiwari, Aviral Kumar & Goodell, John W. & Tedeschi, Marco, 2024. "Asymmetric and frequency-domain spillover effects among industrial metals, precious metals, and energy futures markets," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1556-1592.
    14. Sheng Cheng & Wei Liu & Qisheng Jiang & Yan Cao, 2023. "Multi–Scale Risk Connectedness Between Economic Policy Uncertainty of China and Global Oil Prices in Time–Frequency Domains," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1593-1616, April.
    15. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    16. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    17. Zhang, Yue-Jun & Yan, Xing-Xing, 2020. "The impact of US economic policy uncertainty on WTI crude oil returns in different time and frequency domains," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 750-768.
    18. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Adekoya, Oluwasegun B. & Hammoudeh, Shawkat, 2023. "What do we know about the price spillover between green bonds and Islamic stocks and stock market indices?," Global Finance Journal, Elsevier, vol. 55(C).
    19. Fasanya, Ismail O. & Adekoya, Oluwasegun B. & Adetokunbo, Abiodun M., 2021. "On the connection between oil and global foreign exchange markets: The role of economic policy uncertainty," Resources Policy, Elsevier, vol. 72(C).
    20. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Oil price shocks and the return and volatility spillover between industrial and precious metals," Energy Economics, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1533-:d:336634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.