IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v82y2023ics0301420723001988.html
   My bibliography  Save this article

Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach

Author

Listed:
  • Mishra, Aswini Kumar
  • Arunachalam, Vairam
  • Olson, Dennis
  • Patnaik, Debasis

Abstract

This paper presents a unique time-varying parameter vector autoregression (TVP-VAR) based extended joint connectedness approach to quantify the connectedness and transmission mechanism of shocks of nine commodities futures returns (namely; Gold and Silver from the category of precious metals; Copper, Lead, Zinc, Nickel and Aluminium from the category of base or industry metals; Natural Gas and Brent Crude Oil from energy sector) obtained from Multi Commodity Exchange of India Limited (MCX) from January 1, 2018 to December 31, 2021. This paper employs Balcilar et al. (2021)'s TVP-VAR extended joint connectedness approach, which combines the TVP-VAR connectedness approach of Antonakakis et al. (2020) with the joint spillover approach of Lastrapes and Wiesen (2021), to investigate the dynamic connectedness among the select commodity futures of interest. Our findings show that system-wide dynamic connectedness varies over time and is driven by economic events. The pandemic shocks appear to have an impact on system-wide dynamic connectedness, which peaks during the COVID-19 pandemic. Crude oil and zinc are the primary net shock transmitters, whereas gold and silver are the primary net shock receivers. We also discovered that the role of aluminum in shock transmitters and shock receivers changed during the course of the investigation. Pairwise connectivity, on the other hand, shows that Zinc, Copper, Nickel, and Crude oil are the key drivers of gold price changes, explaining the network's high degree of interconnectivity. During the study period, it was also discovered that silver has a significant influence on gold. Furthermore, in comparison to natural gas, gold's spillover activity is still relatively modest (on a scale), indicating that gold is less sensitive to market innovations.

Suggested Citation

  • Mishra, Aswini Kumar & Arunachalam, Vairam & Olson, Dennis & Patnaik, Debasis, 2023. "Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s0301420723001988
    DOI: 10.1016/j.resourpol.2023.103490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723001988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adekoya, Oluwasegun B. & Akinseye, Ademola B. & Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David & Oliyide, Johnson, 2022. "Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies," Resources Policy, Elsevier, vol. 78(C).
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Bahattin Buyuksahin & Jeffrey H. Harris, 2011. "Do Speculators Drive Crude Oil Futures Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 167-202.
    4. repec:dau:papers:123456789/14980 is not listed on IDEAS
    5. Mishra, Aswini Kumar & Ghate, Kshitish & Renganathan, Jayashree & Kennet, Joushita J. & Rajderkar, Nilay Pradeep, 2022. "Rolling, recursive evolving and asymmetric causality between crude oil and gold prices: Evidence from an emerging market," Resources Policy, Elsevier, vol. 75(C).
    6. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    7. Stiassny, Alfred, 1996. "A Spectral Decomposition for Structural VAR Models," Empirical Economics, Springer, vol. 21(4), pages 535-555.
    8. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    9. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    10. Umar, Zaghum & Gubareva, Mariya & Teplova, Tamara, 2021. "The impact of Covid-19 on commodity markets volatility: Analyzing time-frequency relations between commodity prices and coronavirus panic levels," Resources Policy, Elsevier, vol. 73(C).
    11. Lastrapes, William D. & Wiesen, Thomas F.P., 2021. "The joint spillover index," Economic Modelling, Elsevier, vol. 94(C), pages 681-691.
    12. Choi, Kyongwook & Hammoudeh, Shawkat, 2010. "Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment," Energy Policy, Elsevier, vol. 38(8), pages 4388-4399, August.
    13. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    14. Liu, Xiang-dong & Pan, Fei & Yuan, Lin & Chen, Yu-wang, 2019. "The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula," Energy, Elsevier, vol. 182(C), pages 999-1012.
    15. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    16. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    17. Md Lutfur Rahman, Syed Jawad Hussain Shahzad, Gazi Salah Uddin, and Anupam Dutta, 2022. "Comparing the Risk Spillover from Oil and Gas to Investment Grade and High-yield Bonds through Optimal Copulas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Suleyman Basak & Anna Pavlova, 2016. "A Model of Financialization of Commodities," Journal of Finance, American Finance Association, vol. 71(4), pages 1511-1556, August.
    19. Baele, Lieven, 2005. "Volatility Spillover Effects in European Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(2), pages 373-401, June.
    20. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    21. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    22. Figini, Silvia & Maggi, Mario & Uberti, Pierpaolo, 2020. "The market rank indicator to detect financial distress," Econometrics and Statistics, Elsevier, vol. 14(C), pages 63-73.
    23. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    24. Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
    25. Naeem, Muhammad Abubakr & Karim, Sitara & Uddin, Gazi Salah & Junttila, Juha, 2022. "Small fish in big ponds: Connections of green finance assets to commodity and sectoral stock markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    26. Le Thanh Ha, 2022. "Interlinkages of cryptocurrency and stock markets during COVID-19 pandemic by applying a TVP-VAR extended joint connected approach," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(3), pages 407-428, March.
    27. Mishra, Aswini Kumar & Ghate, Kshitish, 2022. "Dynamic connectedness in non-ferrous commodity markets: Evidence from India using TVP-VAR and DCC-GARCH approaches," Resources Policy, Elsevier, vol. 76(C).
    28. Hong, Harrison & Yogo, Motohiro, 2012. "What does futures market interest tell us about the macroeconomy and asset prices?," Journal of Financial Economics, Elsevier, vol. 105(3), pages 473-490.
    29. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    30. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    31. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    32. Bilgin, Mehmet Huseyin & Gogolin, Fabian & Lau, Marco Chi Keung & Vigne, Samuel A., 2018. "Time-variation in the relationship between white precious metals and inflation: A cross-country analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 55-70.
    33. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    34. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    35. Aswini Kumar Mishra & Saksham Agrawal & Jash Ashish Patwa, 2022. "Return and volatility spillover between India and leading Asian and global equity markets: an empirical analysis," Journal of Economics, Finance and Administrative Science, Emerald Group Publishing Limited, vol. 27(54), pages 294-312, May.
    36. Daskalaki, Charoula & Skiadopoulos, George, 2011. "Should investors include commodities in their portfolios after all? New evidence," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2606-2626, October.
    37. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    38. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    39. Mario Maggi & Maria-Laura Torrente & Pierpaolo Uberti, 2020. "Proper measures of connectedness," Annals of Finance, Springer, vol. 16(4), pages 547-571, December.
    40. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    41. Brian D. Wright, 2011. "The Economics of Grain Price Volatility," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 32-58.
    42. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    43. Caloia, Francesco Giuseppe & Cipollini, Andrea & Muzzioli, Silvia, 2019. "How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study," Energy Economics, Elsevier, vol. 84(C).
    44. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    45. Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
    46. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    47. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    48. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswas, Priti & Jain, Prachi & Maitra, Debasish, 2024. "Are shocks in the stock markets driven by commodity markets? Evidence from Russia-Ukraine war," Journal of Commodity Markets, Elsevier, vol. 34(C).
    2. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    3. Zhong, Yufei & Chen, Xuesheng & Wang, Chengfang & Wang, Zhixian & Zhang, Yuchen, 2023. "The hedging performance of green bond markets in China and the U.S.: Novel evidence from cryptocurrency uncertainty," Energy Economics, Elsevier, vol. 128(C).
    4. Boqiang Lin & Tianxu Lan, 2024. "The time‐varying volatility spillover effects between China's coal and metal market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 699-719, May.
    5. Chen, Yanan & Qi, Haozhi, 2024. "Dynamic interplay between Chinese energy, renewable energy stocks, and commodity markets: Time-frequency causality study," Renewable Energy, Elsevier, vol. 228(C).
    6. Capitani, Daniel H D & Gaio, Luiz Eduardo & Mattos, Fabio L. & Franco Da Silveira, Rodrigo Lanna & Cruz, Jose Cesar, 2024. "Corn ethanol expansion in Brazil: Are volatility interconnectedness changing?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343612, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    2. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Multiscale spillovers, connectedness, and portfolio management among precious and industrial metals, energy, agriculture, and livestock futures," Resources Policy, Elsevier, vol. 74(C).
    3. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    4. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    5. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    6. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    7. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    8. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    9. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    10. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    11. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    12. Naeem, Muhammad Abubakr & Chatziantoniou, Ioannis & Gabauer, David & Karim, Sitara, 2024. "Measuring the G20 stock market return transmission mechanism: Evidence from the R2 connectedness approach," International Review of Financial Analysis, Elsevier, vol. 91(C).
    13. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    14. Kapar, Burcu & Billah, Syed Mabruk & Rana, Faisal & Balli, Faruk, 2024. "An investigation of the frequency dynamics of spillovers and connectedness among GCC sectoral indices," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1442-1467.
    15. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    16. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    17. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    18. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    19. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    20. Inglesi-Lotz, R. & Dogan, Eyup & Nel, J. & Tzeremes, Panayiotis, 2023. "Connectedness and spillovers in the innovation network of green transportation," Energy Policy, Elsevier, vol. 180(C).

    More about this item

    Keywords

    Commodity futures market; COVID-19 pandemic; TVP-VAR; Dynamic connectedness; Joint connectedness;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • F3 - International Economics - - International Finance
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s0301420723001988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.