IDEAS home Printed from https://ideas.repec.org/f/c/pgo641.html
   My authors  Follow this author

Vasyl Golosnoy

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Golosnoy, Vasyl & Rossen, Anja, 2014. "Modeling dynamics of metal price series via state space approach with two common factors," HWWI Research Papers 156, Hamburg Institute of International Economics (HWWI).

    Cited by:

    1. Juan Antonio Galán-Gutiérrez & Rodrigo Martín-García, 2022. "Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    2. Galán-Gutiérrez, Juan Antonio & Labeaga, José M. & Martín-García, Rodrigo, 2023. "Cointegration between high base metals prices and backwardation: Getting ready for the metals super-cycle," Resources Policy, Elsevier, vol. 81(C).

  2. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.

    Cited by:

    1. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
    2. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    3. Monica Billio & Roberto Casarin & Michele Costola & Matteo Iacopini, 2021. "COVID-19 spreading in financial networks: A semiparametric matrix regression model," Working Papers 2021:05, Department of Economics, University of Venice "Ca' Foscari".
    4. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    5. Stanislav Anatolyev & Nikita Kobotaev, 2018. "Modeling and forecasting realized covariance matrices with accounting for leverage," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
    6. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    7. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    8. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    9. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    10. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    11. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    12. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Xin Jin & Jia Liu & Qiao Yang, 2021. "Does the Choice of Realized Covariance Measures Empirically Matter? A Bayesian Density Prediction Approach," Econometrics, MDPI, vol. 9(4), pages 1-22, December.
    14. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    15. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "Intra-daily volatility spillovers between the US and German stock markets," Economics Working Papers 2012-06, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    19. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
    20. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    21. Karapanagiotidis, Paul, 2012. "Improving Bayesian VAR density forecasts through autoregressive Wishart Stochastic Volatility," MPRA Paper 38885, University Library of Munich, Germany.
    22. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
    23. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    24. Ilya Archakov & Peter Reinhard Hansen, 2021. "A New Parametrization of Correlation Matrices," Econometrica, Econometric Society, vol. 89(4), pages 1699-1715, July.
    25. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models," Economics Working Paper Series 1517, University of St. Gallen, School of Economics and Political Science.
    26. BRAIONE, Manuela, 2016. "A time-varying long run HEAVY model," LIDAM Discussion Papers CORE 2016002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    28. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    29. Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    31. Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
    32. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    33. Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
    34. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    35. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    36. Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    37. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    38. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    39. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    40. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    41. Fabrizio Cipollini & Giampiero Gallo & Alessandro Palandri, 2020. "A Dynamic Conditional Approach to Portfolio Weights Forecasting," Econometrics Working Papers Archive 2020_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    42. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    43. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    44. Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
    45. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    46. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    47. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    48. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    49. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    50. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    51. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
    52. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks," Working Papers 201951, University of Pretoria, Department of Economics.
    53. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    54. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    55. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    56. Ziyi Zhang & Wai Keung Li, 2019. "An Experiment on Autoregressive and Threshold Autoregressive Models with Non-Gaussian Error with Application to Realized Volatility," Economies, MDPI, vol. 7(2), pages 1-11, June.
    57. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    58. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    59. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    60. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
    61. Minchul Shin & Molin Zhong, 2020. "A New Approach to Identifying the Real Effects of Uncertainty Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 367-379, April.
    62. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    63. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    64. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    65. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.
    66. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    67. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    68. Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
    69. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    70. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    71. Herrera, Rodrigo & Piña, Marco, 2024. "Market risk modeling with option-implied covariances and score-driven dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    72. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.

  3. Golosnoy, Vasyl & Hogrefe, Jens, 2009. "Sequential methodology for signaling business cycle turning points," Kiel Working Papers 1528, Kiel Institute for the World Economy (IfW Kiel).

    Cited by:

    1. Vasyl Golosnoy & Jens Hogrefe, 2013. "Signaling NBER turning points: a sequential approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 438-448, February.

  4. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.

    Cited by:

    1. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    2. Vasyl Golosnoy & Helmut Herwartz, 2012. "Dynamic Modeling Of High-Dimensional Correlation Matrices In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-22.

Articles

  1. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).

    Cited by:

    1. Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
    2. Clements, Adam & Vasnev, Andrey L., 2023. "Combining simple multivariate HAR-like models for portfolio construction," Working Papers BAWP-2023-03, University of Sydney Business School, Discipline of Business Analytics.
    3. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    4. Jiawen Luo & Oguzhan Cepni & Riza Demirer & Rangan Gupta, 2022. "Forecasting Multivariate Volatilities with Exogenous Predictors: An Application to Industry Diversification Strategies," Working Papers 202258, University of Pretoria, Department of Economics.
    5. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    6. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.
    7. Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).

  2. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.

    Cited by:

    1. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.
    2. Gao, Shang & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting stock market volatility: The sum of the parts is more than the whole," Finance Research Letters, Elsevier, vol. 55(PA).

  3. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.

    Cited by:

    1. Berrisch, Jonathan & Pappert, Sven & Ziel, Florian & Arsova, Antonia, 2023. "Modeling volatility and dependence of European carbon and energy prices," Finance Research Letters, Elsevier, vol. 52(C).

  4. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.

    Cited by:

    1. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    2. Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
    3. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    4. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    5. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.

  5. Golosnoy, Vasyl & Roestel, Jan, 2019. "Real-Time Monitoring Of The Us Inflation Expectation Process," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2221-2249, September.

    Cited by:

    1. Chen, Shi & Härdle, Wolfgang Karl & Wang, Weining, 2020. "The common and speci fic components of inflation expectation across European countries," IRTG 1792 Discussion Papers 2020-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

  6. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.

    Cited by:

    1. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    2. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    3. Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
    4. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    5. Clements, Adam & Vasnev, Andrey L., 2023. "Combining simple multivariate HAR-like models for portfolio construction," Working Papers BAWP-2023-03, University of Sydney Business School, Discipline of Business Analytics.
    6. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    7. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    8. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    9. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.

  7. Vasyl Golosnoy & Anja Rossen, 2018. "Modeling dynamics of metal price series via state space approach with two common factors," Empirical Economics, Springer, vol. 54(4), pages 1477-1501, June.
    See citations under working paper version above.
  8. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.

    Cited by:

    1. Dette, Holger & Golosnoy, Vasyl & Kellermann, Janosch, 2022. "Correcting Intraday Periodicity Bias in Realized Volatility Measures," Econometrics and Statistics, Elsevier, vol. 23(C), pages 36-52.
    2. Oikonomikou, Leoni Eleni, 2018. "Modeling financial market volatility in transition markets: a multivariate case," Research in International Business and Finance, Elsevier, vol. 45(C), pages 307-322.
    3. Chen, Bin-xia & Sun, Yan-lin, 2022. "The impact of VIX on China’s financial market: A new perspective based on high-dimensional and time-varying methods," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    4. Noureddine Benlagha & Wael Hemrit, 2022. "Does economic policy uncertainty matter to explain connectedness within the international sovereign bond yields?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(1), pages 1-21, January.
    5. Harald Schmidbauer & Angi Rösch & Erhan Uluceviz & Narod Erkol, 2016. "The Russian Stock Market during the Ukrainian Crisis: A Network Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 478-509, December.
    6. Li, Yanshuang & Zhuang, Xintian & Wang, Jian & Zhang, Weiping, 2020. "Analysis of the impact of Sino-US trade friction on China’s stock market based on complex networks," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Alshater, Muneer M. & Alqaralleh, Huthaifa & El Khoury, Rim, 2023. "Dynamic asymmetric connectedness in technological sectors," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    8. Vera Ivanyuk, 2021. "Modeling of Crisis Processes in the Financial Market," Economies, MDPI, vol. 9(4), pages 1-17, October.
    9. Vasyl Golosnoy & Anja Rossen, 2018. "Modeling dynamics of metal price series via state space approach with two common factors," Empirical Economics, Springer, vol. 54(4), pages 1477-1501, June.
    10. Zhang, Weiping & Zhuang, Xintian & Lu, Yang & Wang, Jian, 2020. "Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework," International Review of Financial Analysis, Elsevier, vol. 71(C).
    11. Zhou, Dong-hai & Liu, Xiao-xing & Tang, Chun & Yang, Guang-yi, 2023. "Time-varying risk spillovers in Chinese stock market – New evidence from high-frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    12. Huang, Wei-Qiang & Wang, Dan, 2018. "Systemic importance analysis of chinese financial institutions based on volatility spillover network," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 19-30.
    13. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    14. Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Aug 2024.
    15. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).
    16. Gkillas, Konstantinos & Konstantatos, Christoforos & Floros, Christos & Tsagkanos, Athanasios, 2021. "Realized volatility spillovers between US spot and futures during ECB news: Evidence from the European sovereign debt crisis," International Review of Financial Analysis, Elsevier, vol. 74(C).
    17. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
    18. Tumala, Mohammed M. & Atoi, Ngozi V. & Karimo, Tari M., 2023. "Returns and Volatility Spillover between Nigeria and Selected Global Stock Markets: A Diebold-Yilmaz Approach," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 76(2), pages 173-208.
    19. Burak Korkusuz & David G. McMillan & Dimos Kambouroudis, 2023. "Complex network analysis of volatility spillovers between global financial indicators and G20 stock markets," Empirical Economics, Springer, vol. 64(4), pages 1517-1537, April.
    20. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    21. Yin, Kedong & Liu, Zhe & Jin, Xue, 2020. "Interindustry volatility spillover effects in China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    22. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    23. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia, 2023. "Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence," International Review of Financial Analysis, Elsevier, vol. 87(C).
    24. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    25. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    26. Waqar Haider Hashmi & Nazima Ellahi & Saima Ehsan & Ajmal Waheed, 2021. "Transmission Of Contemporaneous Shocks From The World To Emerging Islamic Equity Markets: An Application Of Geweke Measure," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 10(4), pages 44-55, December.

  9. Vasyl Golosnoy & Yarema Okhrin, 2015. "Using information quality for volatility model combinations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1055-1073, June.

    Cited by:

    1. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    2. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.

  10. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.

    Cited by:

    1. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    2. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    3. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    4. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    5. Ding, Shusheng & Cui, Tianxiang & Zhang, Yongmin, 2022. "Futures volatility forecasting based on big data analytics with incorporating an order imbalance effect," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.
    7. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    8. Ahmed, Walid M.A., 2017. "The impact of foreign equity flows on market volatility during politically tranquil and turbulent times: The Egyptian experience," Research in International Business and Finance, Elsevier, vol. 40(C), pages 61-77.
    9. Yafeng Shi & Tingting Ying & Yanlong Shi & Chunrong Ai, 2020. "A comparison of conditional predictive ability of implied volatility and realized measures in forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1025-1034, November.
    10. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.
    11. Ding, Shusheng & Cui, Tianxiang & Zhang, Yongmin, 2020. "Incorporating the RMB internationalization effect into its exchange rate volatility forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

  11. Vasyl Golosnoy & Jens Hogrefe, 2013. "Signaling NBER turning points: a sequential approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 438-448, February.

    Cited by:

    1. Sergey Smirnov & Nikolay Kondrashov & Anna Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Post-Print hal-01692230, HAL.
    2. Camillo Cammarota, 2017. "Estimating the turning point location in shifted exponential model of time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1269-1281, May.
    3. Vasyl Golosnoy & Anja Rossen, 2018. "Modeling dynamics of metal price series via state space approach with two common factors," Empirical Economics, Springer, vol. 54(4), pages 1477-1501, June.
    4. Jamol Bahromov, 2022. "Regime-switching empirical similarity model: a comparison with baseline models," Empirical Economics, Springer, vol. 63(5), pages 2655-2674, November.

  12. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
    See citations under working paper version above.
  13. Vasyl Golosnoy & Helmut Herwartz, 2012. "Dynamic Modeling Of High-Dimensional Correlation Matrices In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-22.

    Cited by:

    1. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    2. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.

  14. Vasyl Golosnoy & Iryna Okhrin & Wolfgang Schmid, 2012. "Statistical Surveillance of Volatility Forecasting Models," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 513-543, June.

    Cited by:

    1. Miriam Isabel Seifert, 2023. "Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction," Papers 2311.15355, arXiv.org.
    2. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.
    3. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.
    4. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.

  15. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.

    Cited by:

    1. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    2. Tobias Berens & Dominik Wied & Daniel Ziggel, 2014. "Automated Portfolio Optimization Based on a New Test for Structural Breaks," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 2(2), pages 243-264, April.
    3. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    4. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2012. "A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function," Papers 1207.1003, arXiv.org, revised Nov 2014.
    5. Bodnar Taras & Schmid Wolfgang, 2009. "Estimation of optimal portfolio compositions for Gaussian returns," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 179-201, April.
    6. Dominik Wied & Daniel Ziggel & Tobias Berens, 2013. "On the application of new tests for structural changes on global minimum-variance portfolios," Statistical Papers, Springer, vol. 54(4), pages 955-975, November.
    7. Konstantinos Bisiotis & Stelios Psarakis & Athanasios N. Yannacopoulos, 2022. "Affine Term Structure Models: Applications in Portfolio Optimization and Change Point Detection," Mathematics, MDPI, vol. 10(21), pages 1-33, November.
    8. Andrew Kumiega & Thaddeus Neururer & Ben Van Vliet, 2014. "Trading system capability," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 383-392, March.
    9. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    10. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.

  16. Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.

    Cited by:

    1. Vasyl Golosnoy & Nestor Parolya, 2016. "`To Have What They are Having': Portfolio Choice for Mimicking Mean-Variance Savers," Papers 1611.01524, arXiv.org.
    2. Titi Purwandari & Riaman & Yuyun Hidayat & Sukono & Riza Andrian Ibrahim & Rizki Apriva Hidayana, 2023. "Selecting and Weighting Mechanisms in Stock Portfolio Design Based on Clustering Algorithm and Price Movement Analysis," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    3. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    4. Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
    5. Bajeux-Besnainou, Isabelle & Bandara, Wachindra & Bura, Efstathia, 2012. "A Krylov subspace approach to large portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1688-1699.
    6. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    7. Gulliksson, Mårten & Mazur, Stepan, 2019. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Working Papers 2019:3, Örebro University, School of Business.
    8. Fu, Yufen & Blazenko, George W., 2017. "Normative portfolio theory," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 240-251.
    9. Sukono & Dedi Rosadi & Di Asih I Maruddani & Riza Andrian Ibrahim & Muhamad Deni Johansyah, 2024. "Mechanisms of Stock Selection and Its Capital Weighing in the Portfolio Design Based on the MACD-K-Means-Mean-VaR Model," Mathematics, MDPI, vol. 12(2), pages 1-22, January.
    10. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    11. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.

  17. Vasyl Golosnoy & Sergiy Ragulin & Wolfgang Schmid, 2009. "Multivariate CUSUM chart: properties and enhancements," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(3), pages 263-279, September.

    Cited by:

    1. Vasyl Golosnoy & Jens Hogrefe, 2013. "Signaling NBER turning points: a sequential approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 438-448, February.
    2. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.

  18. Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.

    Cited by:

    1. Todd Guilfoos & Andreas Duus Pape, 2020. "Estimating Case-Based Learning," Games, MDPI, vol. 11(3), pages 1-25, September.
    2. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    3. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.
    4. Kinjo Keita & Sugawara Shinya, 2016. "Predicting Empirical Patterns in Viewing Japanese TV Dramas Using Case-Based Decision Theory," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(2), pages 679-709, June.
    5. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    6. Pape, Andreas & Kurtz, Kenneth, 2013. "Evaluating Case-based Decision Theory: Predicting Empirical Patterns of Human Classification Learning (Extensions)," MPRA Paper 45206, University Library of Munich, Germany.
    7. Shiri Alon & Sarah Auster & Gabi Gayer & Stefania Minardi, 2023. "Persuasion With Limited Data: A Case-Based Approach," CRC TR 224 Discussion Paper Series crctr224_2023_443, University of Bonn and University of Mannheim, Germany.
    8. Radoc, Benjamin, 2018. "Case-based investing: Stock selection under uncertainty," Journal of Behavioral and Experimental Finance, Elsevier, vol. 17(C), pages 53-59.
    9. Minjie Huang & Shunan Zhao & Andreas Pape, 2023. "Estimating Case‐based Individual and Social Learning in Corporate Tax Avoidance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 403-434, April.
    10. Jiří Fotr, 2016. "Practices, methods and tools for project portfolio management," Ekonomika a Management, Prague University of Economics and Business, vol. 2016(4).
    11. David Bauder & Taras Bodnar & Stepan Mazur & Yarema Okhrin, 2018. "Bayesian Inference For The Tangent Portfolio," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    12. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    13. Pape, Andreas Duus & Kurtz, Kenneth J., 2013. "Evaluating case-based decision theory: Predicting empirical patterns of human classification learning," Games and Economic Behavior, Elsevier, vol. 82(C), pages 52-65.

  19. Vasyl Golosnoy, 2007. "Sequential monitoring of minimum variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 39-55, March.

    Cited by:

    1. K. Triantafyllopoulos, 2011. "Time-varying vector autoregressive models with stochastic volatility," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 369-382, September.
    2. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Frisén, Marianne, 2011. "On multivariate control charts," Research Reports 2011:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
    5. Frisén, Marianne, 2011. "Inference Principles For Multivariate Surveillance," Research Reports 2011:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    6. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2009. "Sufficient reduction in multivariate surveillance," Research Reports 2009:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

  20. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.

    Cited by:

    1. Taras Bodnar & Nestor Parolya & Erik Thors'en, 2022. "Two is better than one: Regularized shrinkage of large minimum variance portfolio," Papers 2202.06666, arXiv.org.
    2. Sourish Das & Aritra Halder & Dipak K. Dey, 2017. "Regularizing Portfolio Risk Analysis: A Bayesian Approach," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 865-889, September.
    3. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    4. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    5. Imre Kondor & G'abor Papp & Fabio Caccioli, 2017. "Analytic approach to variance optimization under an $\ell_1$ constraint," Papers 1709.08755, arXiv.org, revised Jul 2018.
    6. Li, Hua & Bai, Zhi Dong & Wong, Wing Keung, 2015. "High dimensional Global Minimum Variance Portfolio," MPRA Paper 66284, University Library of Munich, Germany.
    7. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    8. Caccioli, Fabio & Kondor, Imre & Papp, Gábor, 2015. "Portfolio optimization under expected shortfall: contour maps of estimation error," LSE Research Online Documents on Economics 119463, London School of Economics and Political Science, LSE Library.
    9. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
    10. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    11. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    12. Taras Bodnar & Solomiia Dmytriv & Yarema Okhrin & Nestor Parolya & Wolfgang Schmid, 2020. "Statistical inference for the EU portfolio in high dimensions," Papers 2005.04761, arXiv.org.
    13. Yarema Okhrin & Wolfgang Schmid, 2007. "Comparison of different estimation techniques for portfolio selection," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(2), pages 109-127, August.
    14. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    15. Vasyl Golosnoy, 2010. "No-transaction bounds and estimation risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 487-493.
    16. Gabriel Frahm & Christoph Memmel, 2010. "Dominating Estimators for Minimum-Variance Portfolios," Post-Print hal-00741629, HAL.
    17. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    18. Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.
    19. Philip L.H. Yu & Thomas Mathew & Yuanyuan Zhu, 2017. "A generalized pivotal quantity approach to portfolio selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1402-1420, June.
    20. Sourish Das & Aritra Halder & Dipak K. Dey, 2014. "Regularizing Portfolio Risk Analysis: A Bayesian Approach," Papers 1404.3258, arXiv.org, revised Oct 2015.
    21. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    22. Thomas Holgersson & Peter Karlsson & Andreas Stephan, 2020. "A risk perspective of estimating portfolio weights of the global minimum-variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 59-80, March.
    23. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    24. Taras Bodnar & Solomiia Dmytriv & Nestor Parolya & Wolfgang Schmid, 2017. "Tests for the weights of the global minimum variance portfolio in a high-dimensional setting," Papers 1710.09587, arXiv.org, revised Jul 2019.
    25. Takuya Kinkawa & Nobuo Shinozaki, 2010. "Dominance of a Class of Stein type Estimators for Optimal Portfolio Weights When the Covariance Matrix is Unknown," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(1), pages 19-50, March.
    26. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    27. G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
    28. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    29. David Bauder & Taras Bodnar & Stepan Mazur & Yarema Okhrin, 2018. "Bayesian Inference For The Tangent Portfolio," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    30. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    31. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    32. Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
    33. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    34. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    35. Kazak, Ekaterina & Pohlmeier, Winfried, 2019. "Testing out-of-sample portfolio performance," International Journal of Forecasting, Elsevier, vol. 35(2), pages 540-554.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.