IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.15355.html
   My bibliography  Save this paper

Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction

Author

Listed:
  • Miriam Isabel Seifert

Abstract

In this paper we study two important representations for extreme value distributions and their max-domains of attraction (MDA), namely von Mises representation (vMR) and variation representation (VR), which are convenient ways to gain limit results. Both VR and vMR are defined via so-called auxiliary functions psi. Up to now, however, the set of valid auxiliary functions for vMR has neither been characterized completely nor separated from those for VR. We contribute to the current literature by introducing ''universal'' auxiliary functions which are valid for both VR and vMR representations for the entire MDA distribution families. Then we identify exactly the sets of valid auxiliary functions for both VR and vMR. Moreover, we propose a method for finding appropriate auxiliary functions with analytically simple structure and provide them for several important distributions.

Suggested Citation

  • Miriam Isabel Seifert, 2023. "Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction," Papers 2311.15355, arXiv.org.
  • Handle: RePEc:arx:papers:2311.15355
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.15355
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Klüppelberg & Miriam Isabel Seifert, 2019. "Financial risk measures for a network of individual agents holding portfolios of light-tailed objects," Finance and Stochastics, Springer, vol. 23(4), pages 795-826, October.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Vasyl Golosnoy & Iryna Okhrin & Wolfgang Schmid, 2012. "Statistical Surveillance of Volatility Forecasting Models," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 513-543, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    2. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    3. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    4. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    5. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    6. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    7. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    8. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    9. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    10. Battulga Gankhuu, 2022. "Merton's Default Risk Model for Private Company," Papers 2208.01974, arXiv.org.
    11. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    12. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    13. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    14. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    15. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    16. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    18. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 123, Paderborn University, CIE Center for International Economics.
    19. Paolo Vanini & Sebastiano Rossi & Ermin Zvizdic & Thomas Domenig, 2023. "Online payment fraud: from anomaly detection to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    20. Claudia Ceci & Katia Colaneri & Rdiger Frey & Verena Kock, 2019. "Value adjustments and dynamic hedging of reinsurance counterparty risk," Papers 1909.04354, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.15355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.